Анализы на антиоксидантную активность крови

Анализы на антиоксидантную активность крови thumbnail

Метод определения

Супероксиддисмутаза:

используется ксантин и ксантиноксидаза (XOD) для генерирования кислородных радикалов, которые, вступая в реакцию с 2-(4-иодофенил)-3-(4-нитрофенол)-5-фенилтетразолиумхлорид (I.N.T.), образуют окрашенное в красный цвет соединение формазан. Активность супероксиддисмутазы определяется как величина ингибирования этой реакции.

Глутатионпероксидаза:

глутатионпероксидаза с помощью гидроперекиси кумина катализирует окисление глутатиона. В присутствии глутатионредуктазы и НАДФ, окисленный глутатион сразу же восстанавливается с соответствующим окислением НАДФН в НАДФ+. Измеряется снижение абсорбции на 340 нм.

Глутатионредуктаза:

глутатионредуктаза катализирует восстановление глутатиона в присутствии НАДФН, который окисляется в НАДФ+. Измеряется снижение абсорбции на 340 нм.

Общий антиоксидантный статус:

ABTSR (2,2′-азидо-ди-[3-этилбензтиазолин сульфонат]) инкубируют с пероксидазой (метмиоглобин) и Н2О2 с образованием радикала ABTSR+. Антиоксиданты, содержащиеся в тестируемой пробе, подавляют развитие окраски пропорционально их концентрации в образце.

Исследуемый материал
Смотрите в описании

По техническим причинам выполнение исследования временно приостановлено.

Комплекс тестов, направленных на оценку антиоксидантных свойств крови. 

  • супероксиддисмутаза эритроцитов; 
  • глутатионпероксидаза эритроцитов; 
  • глутатионредуктаза эритроцитов;
  • общий антиоксидантный статус сыворотки.

Продукция различных реактивных форм кислорода является элементом важных физиологических процессов, в том числе механизмов передачи сигнала и регуляции действия гормонов, факторов роста, цитокинов, процессов транскрипции, апоптоза, транспорта, иммуномодуляции, нейромодуляции. Источниками реактивных форм кислорода являются митохондриальные процессы дыхания, НАДФH-оксидазы, ксантиноксидазы, NO-синтазы. Образование свободных радикалов (высокореактивных молекул, которые содержат неспаренные электроны) ‒ постоянно происходящий в организме процесс. В норме он физиологически сбалансирован за счет активности эндогенных антиоксидантных систем, которые способны увеличивать активность в ответ на увеличение прооксидантных воздействий. 

Повышенное образование реактивных форм кислорода наблюдается при хроническом воспалении, ишемии, воздействии вредных веществ окружающей среды, облучении, курении, приеме некоторых препаратов. При чрезмерном увеличении продукции свободных радикалов вследствие прооксидантных воздействий и/или несостоятельности антиоксидантной защиты развивается окислительный стресс, сопровождающийся повреждением белков, липидов и ДНК. Последствиями действия свободных радикалов могут быть мутагенез, разрушение мембран, повреждение рецепторного аппарата, изменение ферментативной активности и повреждение митохондрий, что влияет на развитие многих видов патологии (атеросклероз, ишемическая болезнь сердца, артериальная гипертензия, сахарный диабет, метаболический синдром, иммунодефицитные состояния, злокачественные новообразования). Эти процессы значительно усиливаются на фоне снижения активности антиоксидантных систем организма. Реактивные формы кислорода вовлечены в процессы старения и развития заболеваний, связанных со старением (сердечно-сосудистые заболевания, нейродегенеративные нарушения, канцерогенез).

Супероксиддисмутаза эритроцитов (Superoxide dismutase, SOD in erythrocytes).

Супероксиддисмутаза (СОД) – фермент, катализирующий дисмутацию токсичного супероксидного радикала, вырабатывающегося при окислительных энергетических процессах, в перекись водорода и молекулярный кислород. Этот фермент присутствует во всех клетках, потребляющих кислород, и представляет важнейшее звено антиоксидантной защиты. Супероксиддисмутаза человека содержит цинк и медь, существует также марганец-содержащая форма фермента. СОД и каталаза образуют антиоксидантную пару, которая предотвращает запуск процессов цепного окисления под действием свободных радикалов. Наличие СОД позволяет поддерживать физиологическую концентрацию супероксидных радикалов в тканях, что обеспечивает возможность существования организма в кислородной атмосфере и использование кислорода. Антиоксидантная активность СОД в тысячи раз выше, чем у таких антиоксидантов, как витамины А и Е. 

Супероксиддисмутаза защищает сердечную мышцу от действия свободных радикалов, образующихся при недостаточности кислорода (ишемии). Степень повышения СОД обратно пропорциональна деятельности левого желудочка и может быть использована как маркер повреждения миокарда. При анемии (снижении в крови количества гемоглобина, эритроцитов и гематокрита) активность СОД в эритроцитах повышена. Активность СОД снижена у пациентов с ослабленной иммунной системой, что делает таких больных более чувствительными к респираторным инфекциям с развитием пневмонии. Активность СОД эритроцитов повышена у больных гепатитом и снижается при развитии острой печеночной недостаточности. Очень высока активность СОД у больных с различными формами лейкемии. Высокую активность СОД у септических больных считают ранним маркером развития у них респираторного дистресс-синдрома. Активность СОД эритроцитов снижена при ревматоидном артрите, ее уровень коррелирует с эффективностью проводимого лечения.

Глутатионпероксидаза эритроцитов (Glutathione рeroxidase, GSH-Px in erythrocytes).

Читайте также:  Биохимический анализ крови расшифровка у взрослых роэ

Одним из основных видов поражения клеток свободными радикалами является разрушение жирных кислот, входящих в состав клеточных мембран (перекисное окисление липидов, или ПОЛ). В результате таких процессов меняется проницаемость клеточной оболочки, что приводит к нарушению жизнедеятельности клетки и ее гибели. Перекисное окисление липидов участвует в патогенезе многих заболеваний, в том числе атеросклероза, ишемической болезни сердца, диабетической ангиопатии. Поскольку жирные кислоты легко поддаются окислению, оболочки клеток содержат большое количество жирорастворимых антиоксидантов, таких как витамины А и Е, которые включены в механизмы защиты от перекисного окисления липидов. К специфическим антиоксидантным ферментам относится глутатион-ферментный автономный комплекс, в который входят трипептид глутатион и антиоксидантные ферменты глутатионпероксидаза (ГП), глутатион-S-трансфераза и глутатионредуктаза. 

ГП служит катализатором реакции восстановления перекисных липидов с помощью глутатиона, многократно ускоряя этот процесс. Помимо этого, глутатионпероксидаза, так же как и каталаза, способна разрушать перекись водорода. При этом она сравнительно более чувствительна к низким концентрациям перекиси водорода, которые наблюдаются чаще. В некоторых тканях (клетки мозга, сердце) каталазы почти нет, поэтому ГП играет там роль основного антиоксидантного фермента. Глутатионпероксидаза является по своей структуре металлоферментом. Для ее выработки необходим микроэлемент селен, причем в достаточно больших количествах, так как каждая молекула ГП содержит 4 атома селена. При недостаточном поступлении селена вместо ГП образуется глутатион-S-трансфераза, разрушающая только перекись водорода и не заменяющая полностью функции глутатионпероксидазы. Наибольшее количество ГП сосредоточено в печени, эритроцитах, надпочечниках. Значительное ее количество содержится в нижних дыхательных путях, где она нейтрализует поступающие из внешней среды озон, окись азота и другие активные молекулы. 

Активность ГП в организме во многом определяет динамику патологических процессов. При снижении активности данного фермента нарушается защита клеток печени от алкоголя и опасных химических веществ, повышается риск возникновения онкологических заболеваний, бесплодия, развития ревматоидного артрита и других заболеваний. Уровень фермента в эритроцитах снижен при железодефицитной анемии, отравлении свинцом, дефиците селена. Повышение уровня отмечается при добавлении в пищу полиненасыщенных жирных кислот. Концентрация фермента в эритроцитах высока при дефиците глюкозо-6-фосфатдегидрогеназы, альфа-талассемии, остром лимфоцитарном лейкозе.

Глутатионредуктаза эритроцитов (Glutathione reductase in erythrocytes (GSSG-Red).

Глутатионредуктаза – фермент класса оксидоредуктаз, участвует в восстановлении (освобождении) связанного глутатиона, который выступает как коэнзим в биохимических реакциях, играет важную роль в механизмах сборки белков, увеличивает пул витаминов А и С, и пр. Глутатионредуктаза часто рассматривается в ассоциации с глутатионпероксидазой, поскольку активность последней в значительной степени зависит от содержания восстановленного глутатиона. Совместное действие этих ферментов включено в механизмы защиты организма от перекиси водорода и органических перекисей. В состав субъединиц глутатионредуктазы входит остаток коферментной формы рибофлавина (витамин В2). 

Уровень глутатионредуктазы в эритроцитах увеличивается при наследственной недостаточности фермента глюкозо-6-фосфатдегидрогеназы (что позволяет использовать глутатионредуктазу в диагностических целях), при диабете, после введения никотиновой кислоты, после интенсивной физической нагрузки. Низкий уровень этого энзима встречается при тяжелых заболеваниях (рак, гепатит, сепсис и др.). Исследование глутатионредуктазы может быть использовано в скрининге, направленном на выявление заболеваний печени, злокачественных заболеваний, обнаружение генетических форм дефицита ферментов, оценку статуса витамина В2.

Общий антиоксидантный статус сыворотки (Total antioxidant status, TAS, serum).

Антиоксидантная активность сыворотки определяется присутствием антиоксидантных ферментов (супероксиддисмутаза, каталаза, глутатионпероксидаза, глутатионредуктаза и др.) и антиоксидантов неферментного действия (в их числе: альбумин, трансферрин, металлотионеины, мочевая кислота, липоевая кислота, глутатион, убихинол, витамины Е и С, каротиноиды, компоненты полифеноловой структуры, поступающие с растительной пищей, включая флавоноиды, и пр.). Для оценки состояния актиоксидантной защиты, помимо определения уровня наиболее важных антиоксидантных ферментов и неферментных антиоксидантов в крови, используют измерение суммарной антиоксидантной способности компонентов сыворотки. Определение общего антиоксидантного статуса помогает клиницисту глубже оценить состояние пациента, факторы, влияющие на развитие текущего заболевания, и, с учетом этого, оптимизировать терапию.

Читайте также:  Что значит в анализе крови рое

Материал для исследований:

  • эритроциты (цельная кровь, гепарин); 
  • сыворотка.

Литература

  1. Арутюнян А.В., Дубинина Е.Е., Зыбина Н.Н.. Методы оценки свободнорадикального окисления и антиоксидантной системы организма. / Методические рекомендации. – СПб.: ИКФ «Фолиант», 2000. — 104 с. 
  2. Казимирко В.К., Мальцев В.И., Бутылин В.Ю., Горобец Н.И. Свободнорадикальное окисление и антиоксидантная терапия / ‒К.: Морион, 2004. ‒- 160 с. 
  3. Путилина Ф.Е., Галкина О.В. и др. Свободнорадикальное окисление: Учебное пособие / Под ред. Н.Д. Ерощенко. – СПб.: Изд-во С.-Петерб. Ун-та, 2008. — 161 с. 
  4. Kusano C., Ferrari B. Total Antioxidant Capacity: a biomarker in biomedical and nutritional studies. – J.Cell.Mol.Biol., 2008. — № 7(1). — p.1-15.  
  5. Tietz Clinical guide to laboratory tests. 4-th ed. Ed. Wu A.N.B. – USA,W.B Sounders Company, 2006. — р.1798.

Источник

Оценка антиоксидантной активности организма

   Выяснилось, что так называемые активные формы кислорода, относящиеся к свободным радикалам, имеют неспаренный электрон и обладают биологическим эффектом, который может оказывать как регуляторное, так и токсическое действие. В клетках организма всегда присутствует какое-то количество свободных радикалов. Они необходимы для осуществления физиологических процессов: дыхания, обмена веществ, защитных иммунных реакций и др.

    Однако когда свободных радикалов становится много (например, при недостаточности работы антиоксидантной системы) чаша весов «окисление — восстановление» перевешивает в сторону окисления. В результате свободные радикалы начинают взаимодействовать не только теми молекулами, с которыми это необходимо для нормальной жизнедеятельности организма, но и с различными структурами клеток (молекулами ДНК, липидами и белками мембран), вызывая тем самым их повреждение.

   Окисление липидов приводит к образованию опасной формы липидного пероксида. В результате перекисного окисления липидов, клеточные мембраны изменяются, они становятся плохо проницаемыми и не справляются со своей главной функцией: избирательно пропускать в клетку одни ионы и молекулы и задерживать другие. Как результат – клетки не выполняют свои функции, а значит, нарушается работа и целостность органов и тканей. Если это эндотелиоциты сосудов, развиться атеросклероз, если зрительные клетки сетчатки глаза — катаракта. При повреждении нейронов головного мозга — слабеют память и внимание. Если свободные радикалы повреждают наследственный материал (молекулы ДНК), то результатом может быть развитие онкологического заболевания, бесплодие, рождение детей с пороками развития.

   Таким образом, эффект окислительного стресса является первичной причиной или одним из основных звеньев патогенеза большинства заболеваний: ускоренного старения, заболеваний сердечно-сосудистой системы,  иммунодефицитов, доброкачественных и злокачественных опухолей, гормональных нарушений, бесплодия и др.

   Откуда же берутся свободные радикалы? Кроме нормального «воспроизводства» свободных радикалов в процессе жизнедеятельности организма мы «добавляем» их в свой рацион, когда едим консервированное мясо, некачественное масло или ветчину, употребляем некоторые лекарства, спиртные напитки, овощи, прошедшие обработку пестицидами. Они попадают в легкие вместе с воздухом, насыщенным выхлопными газами, табачным дымом, мельчайшими частицами асбестовой пыли. Усиленному образованию их в организме способствуют рентгеновское излучение и инфракрасные лучи. И, наконец, свободные радикалы в ненужном избытке сами образуются в клетках при стрессах любого происхождения, эмоциональных потрясениях, травмах, больших физических нагрузках.

   Однако организм обладает немалыми возможностями для борьбы со свободными радикалами. Специальная система защиты, называемая антиоксидантной (противоокислительная система защиты),  устраняет  нарушения клеточных структур, являясь  «ловушкой» для свободных радикалов. Она сдерживает излишнее образование свободных радикалов и направляет их по тем путям клеточного метаболизма, где они приносят пользу.

   Сейчас известен целый ряд соединений, обладающих антиоксидантными свойствами. Они представлены ферментами и низкомолекулярными соединениями.

 
   Среди ферментов, в первую очередь, следует выделить супероксиддисмутазу (СОД) – антиоксидант, представляющий первое звено защиты. Этот фермент находится во всех клетках, потребляющих кислород. В организме имеется три формы СОД, содержащие медь, цинк и магний. Роль супероксиддисмутазы заключается в ускорении реакции превращения токсичного для организма кислородного радикала (супероксид ОО-), продукта окислительных энергетических процессов, в перекись водорода и молекулярный кислород. При ишемической болезни сердца СОД защищает сердечную мышцу от действия свободных радикалов. Уровень СОД в сыворотке при ишемической болезни высокий.

Читайте также:  Можно ли выпить вино перед сдачей общего анализа крови

   Особое место в антиоксидантной системе организма, антиоксидантном статусе принадлежит глутатион-ферментному автономному объединению: глутатион, глутатионпероксидаза, глутатион-S-трансфераза, глутатион-редуктаза.Известно, что мощнейшим «поставщиком» свободных радикалов является перекись водорода.  Для расщепления большого количества перекиси водорода требуется малое количество фермента. Фермент, глутатионпероксидаза, заставляет перекисные радикалы вступать в реакцию друг с другом, после чего образуются вода и кислород. Глутатионпероксидаза содержит селен и играет основную роль в инактивации липидных гидроперекисных соединений. Недостаток селена ведет к снижению активности антиоксидантных ферментов и превращению глутатионпероксидазы в глутатион-S-трансферазу. Для сохранения активности глутатионпероксидазы, помимо селена, необходимы витамины А, С, Е, S- содержащие аминокислоты и, естественно, глутатион. Весь этот глутатионферментный комплекс предотвращает нарушение клеточных мембран вследствие разрушения пероксидов.

   Фермент церулоплазмин является универсальным внеклеточным «гасителем» свободных радикалов. Он является белком плазмы крови, выполняющим в организме ряд важных биологических функций: повышает стабильность клеточных мембран, участвует в иммунологических реакциях (в формировании защитных сил организма), ионном обмене, оказывает антиоксидантное (препятствующее перекисному окислению липидов клеточных мембран) действие, тормозит перекисное окисление липидов (жиров), стимулирует гемопоэз (кроветворение). Церулоплазмин имеет супероксиддисмутазную активность: восстанавливает в крови супероксидные радикалы до кислорода и воды и этим защищает от повреждения липидные структуры мембран. Одной из основных функций церулоплазмина является нейтрализация свободных радикалов, которые освобождаются вовне макрофагами и нейтрофилами во время фагоцитоза, а также при интенсификации свободнорадикального окисления в очагах воспаления. Он окисляет разные субстраты: серотонин, катехоламины, полиамины, полифенолы, превращает двухвалентное железо в трехвалентное. Церулоплазмин переносит медь из печени к органам и тканям, где она функционирует в виде цитохром-С-редуктазы и супероксиддисмутазы. Фермент является фактором естественной защиты организма при воспалительных, аллергических процессах, стрессовых состояниях, повреждениях тканей, в частности, при инфаркте миокарда, ишемии.

   Поддерживать организм в здоровом состоянии — значит сохранять необходимый баланс между свободными радикалами и антиокислительными силами, роль которых выполняют антиоксиданты. Большинство антиоксидантов поступает в организм с пищей. Антиоксиданты являются питательными веществами, в которых постоянно нуждается организм человека. К ним относятся витамины (А, С, Е), селен, цинк, глутатион и др. Наиболее эффективным по своим антиоксидантным свойствам издавна считается витамин Е, улучшающий иммунный статус у пожилых людей и снижающий риск атеросклероза. Витамин С известен, как важный клеточный антиоксидант во многих тканях. Он имеет определенный защитный эффект против возникновения инсульта. Предшественники витамина А– каротиноиды эффективно уничтожают свободные радикалы, в т.ч. синглетный кислород, который может привести к развитию неоплазий.

   Исследования показали, что антиоксиданты помогают организму снижать уровень повреждения тканей, ускорять процесс выздоровления, противостоять инфекциям, а следовательно, увеличить продолжительность жизни.

   Антиоксиданты все более широко применяются для профилактики последствий простудных заболеваний, при большинстве острых заболеваний и состояний, при обострении хронических заболеваний, интоксикациях, ожогах, травмах, операциях, для устранения синдрома «весенней слабости», обусловленного, как полагают, интенсификацией перекисного окисления липидов (ПОЛ). Перекиси липидов необходимы для биосинтеза эйкозаноидов (простагландинов, простациклинов, тромбоксанов, лейкотриенов), прогестерона. Они участвуют в гидроксилировании холестерина (в частности, при образовании кортикостероидов), что создает благоприятные условия для функционирования ферментных систем в мембранах.

   В лаборатории «Хромолаб» проводится комплекс исследований по оценке уровня отдельных ферментов-антиоксидантов (СОД, церулоплазмин, глутатионпероксидаза), витаминов-антиоксидантов, микроэлементов, определению перекисного окисления липидов (ПОЛ) и оценке общего антиоксидантного статуса (TAS) — как показателя многоуровневой системы антиоксидантной защиты организма. Такая комплексная диагностика позволит врачу-специалисту скорректировать антиоксидативный статус пациента до появления симптомов заболевания и использовать показатели TAS и ПОЛ как индикацию для назначения пациенту антиоксидативной терапии.

Источник