Анализ крови и мочи на тсх

Анализ крови и мочи на тсх thumbnail

ТОНКОСЛОЙНАЯ ХРОМАТОГРАФИЯ – ЭКСПРЕСС МЕТОД АНАЛИЗА ХИМИЧЕСКИХ СОЕДИНЕНИЙ

Кабиров Г.Ф., Кадырова Р.Г., Муллахметов Р.Р. ФГОУ ВПО «Казанская государственная академия ветеринарной медицины имени Н.Э. Баумана»

Метод тонкослойной хроматографии (ТСХ) – важный аналитический, физико-химический и микропрепаративный метод, который отличается простотой, высокой экономичностью и универсальностью. Тонкослойная (планарная) хроматография – оперативный метод хроматографии для анализа всех классов химических соединений, приобрела значение в качестве экспресс-метода анализа и широко используется в науке, промышленности, медицине, фармации, ветеринарии, в контроле загрязнений окружающей среды, в центрах Госсанэпидемнадзора, стандартизации и метрологии и. т.д.[1–3].

В развитии современной тонкослойной хроматографии можно выделить следующие направления: инструментализация и автоматизация ТСХ на всех стадиях анализа; использование новых сорбционных материалов и элюентов; разработка новых способов и приемов хроматографирования. Перспективными считаются варианты: хроматографирование под давлением, в непрерывном потоке элюента, с управляемой газовой фазой (ТСХ-УГФ) [2, 4].

Исследования  показали,  что  с  помощью  метода  ТСХ  можно получить важную информацию о характере метаболизма углеводов в биологических жидкостях при патологических состояниях организма [3].  Для ранней диагностики нарушений минерального обмена у животных предложен способ определения гексоз в сыворотке крови методом ТСХ [5].

Тонкослойная   хроматография   применяется   в   контроле лекарственных средств с целью использования их в терапевтической практике [6, 7] и ветеринарии [3]. Разделение и определение водорастворимых и жирорастворимых витаминов осуществляется методом ТСХ [3, 6, 8].

Хроматографические методы анализа являются надежным методом экспрессного контроля за содержанием в атмосфере и других объектах окружающей среды (а также продуктах питания) чрезвычайно токсичных хлорсодержащих пестицидов и полихлорбифенолов, которые добавляют к ядохимикатам для усиления их действия [9].

Несмотря на все возрастающие усилия, направленные на ограничение применения некоторых хлорорганических пестицидов, в первую очередь персистентных и легко распространяющихся в окружающей среде хлорфеноксикарбоновых кислот и циклодиенов, их метаболиты и продукты фотолиза все еще обнаруживают в различных экологических системах и в организме человека.

Установлено, что в естественных условиях под действием УФ-облучения, высоких температур из хлорароматических соединений может образовываться 2, 3, 7, 8-тетрахлорбензодиоксин (диоксин), который является одним из самых сильных синтетических ядов (LD50 5 · 10–5 г/кг) [10].

Для правильной токсикологической оценки пестицидов, установления остаточных их количеств в биологических объектах необходимы высокочувствительные, селективные методы анализа. В качестве таких методов могут служить хроматографические методы – ГЖХ, ТСХ [3], ВЭЖХ [11, 12].

Актуальными становятся также вопросы изучения токсических свойств новых лекарственных средств для ветеринарии и разработки эффективных методов их исследования [13].

  • литературе имеется значительное число работ, посвященных обнаружению методом ТСХ пестицидов в различных пищевых продуктах, почве, воде, лекарственных растениях [3].

Определение содержания пестицидов в различных объектах включает несколько стадий:

– извлечение обнаруживаемых веществ (пестицидов) из проб органическими растворителями: диметилсульфоксидом из сливочного масла; гексаном из молока, овощей; петролейным эфиром из почвы; хлороформом из воды, кормов;

–  очистка экстрактов;

–  хроматографирование;

– определение RF веществ и стандартов (пестицидов), нижний предел обнаружения – от 0,1 до 0,005 мкг.

Предложено  [14]   в  тонкослойной  (планарной)   хроматографии использовать в качестве первичной основной величины удерживания не подвижность RF, а новую величину – планарную подвижность Rp, которая для i-соединения определяется по уравнению:

Rpi =  Ii / Li ; для стандартного соединения (st),

Rpst = I st/ Lst 

Ii, Ist – расстояние от линии старта до центра зоны i-го соединения и стандарта (st), соответственно. Li, Lst – расстояние от центра зоны i-соединения и стандарта (st) до линии фронта подвижной фазы, соответственно. При этом величину относительного удерживания определяют по уравнению:

rist =R p st / R pi,

которая идентична величине относительного удерживания (rist), используемой в колоночной хроматографии.

Количественное определение веществ (пестицидов) осуществляется по площади пятен на хроматограмме, путем сравнения с пятнами стандартов. Для сканирования пятен предлагается видеоденситометр «Сорбитол» [2, 3].

Тонкослойная хроматография пестицидов успешно осуществляется на сорбентах: силикагель, окись алюминия. Для хлорированных веществ удобным сорбентом является окись алюминия, пропитанная нитратом серебра. Часто пользуются готовыми хроматографическими пластинками силуфол УФ254, выпускаемыми зарубежными фирмами [3].

  • нашей стране пластины для ТСХ выпускают на полимерной (лавсановой) подложке ПТСХ-П и алюминиевой подложке ПТСХ-АФ – пластины «Сорбофил» [2].

Для хроматографического разделения пестицидов в качестве элюентов применяют малополярные (или средней полярности) системы растворителей. Ввиду того, что к пестицидам относятся соединения самой разной природы, описано значительное количество различных реагентов для их обнаружения (проявления) на хроматографических пластинках. Для хлорорганических пестицидов часто пользуются нитратом серебра в смеси азотной кислотой или аммиаком, флуоресцентными реактивами (родамином В). Идентификацию фосфорорганических пестицидов проводят реагентами: иодом, нитратом серебра в смеси с бромфеноловым синим, о-динитробензолом. Удобно опрыскивание (или пропитка) сорбента флуоресцентными реактивами. Разделенные на хроматограмме вещества также детектируются при рассмотрении пластинки в УФ-свете

(УФ254 или УФ365) [3].

Приведены величины RF  некоторых хлорорганических пестицидов

(табл.1) [3, 6].

  1. Величина RF хлорорганических пестицидов [3]

Таблица 1.

ПестицидЭлюентВеличина RF
На окисиНа силикагеле
алюминия
ГексахлорбензолГексан0,90
АльдринГексан0,830,68
ДДЭГексан0,780,66
Гексан-ацетон (6:1)0,87
ГептахлорГексан0,760,65
o, n¢-ДДТГексан0,670,54
n, n¢-ДДТГексан0,610,50
Гексан-ацетон (6:1)0,75
ЛинданГексан0,340,20
ДДДГексан0,300,40
Гексан-ацетон (6:1)0,62
МетоксихлорГексан0,15
Гексан-ацетон (6:1)0,60
КельтанГексан0,05
Гексан-ацетон (6:1)0,40
Бензол0,44
ТедионГексан0,03
Гексан-ацетон (6:1)0,55
ЭфирсульфонатГексан0,00
Гексан-ацетон (6:1)0,45
ДикталГексан-ацетон (2:1)0,90
Читайте также:  По анализу крови можно определить заболевание желудка

Из таблицы 1 следует, что в указанной системе растворителей разделение эффективнее идет на окиси алюминия.

Шесть изомерных гексахлорциклогексанов (из которых эффективен только g-изомер) подвергли разделению на силуфоле в системе растворителей: петролейный эфир – четыреххлористый углерод (1 :1); гексан; циклогексан-хлоро

форм (8 : 2); гептан-пропанол-2 (10 : 0,5) [6].

Целый ряд веществ удалось разделить простой или двумерной хроматографией в гептане, содержащем 0,3 % этанола. Силуфол удобен для разделения изомеров гексахлорциклогексана и гексахлорбензола. Для элюирования служил н-гептан для обнаружения – смесь нитрата серебра и 2-феноксиэтанола. При применении силикагеля, пропитанного 5 % жидким парафином, элюировали 96 %-ным этанолом. Хорошо разделялись a-, b-, g-, и d-изомеры гексахлорциклогексана и гексахлорбензола.

Для разделения ДДТ в присутствии полигалогенированных дифенилов использовали двумерное элюирование в S-образной камере. В первом направлении элюировали гептаном, во втором смесью – гептан-ацетон (98 : 2) [6].

2,4-Д (2,4-дихлорфеноксиуксусная кислота) и метаболит 2,4-ДХФ (2,4-дихлорфенол) разделяли на силуфоле. В качестве элюента использовали смесь растворителей: циклогексан, бензол, ледяная уксусная кислота в объемном соотношении 10 : 2 : 2. Для обнаружения применяли 0,1 н раствор нитрата серебра в 3 н.растворе азотной кислоты. Значения RF: для 2,4-Д – 0,33; 2,4- ДХФ – 0,42 [3].

Приведены величины RF некоторых фосфорорганических пестицидов (табл.2) [3].

2.Величина RF фосфорорганических пестицидов [3]

Таблица 2.

ПестицидЭлюентПестицидЭлюент
Гексан-Гексан-хлороформГексан-  Гексан-  хлороформ
ацетонацетонацетонацетон
(4 : 1)(7 : 3)(4 : 1)(7 : 3)
Амифос0,040,180,00Метилнитрофос0,330,460,95
Антио0,180,320,18Фосфамид0,080,220,05
Афуган0,350,46Сайфос*0,020,00
Базудин0,40Цианокс0,270,400,88
Бромофос0,600,72Цидиал0,420,51
Валексон0,54Фенкаптон0,640,79
Гардона0,35Фозалон0,350,460,84
Карбофос0,290,400,59Фталофос0,220,360,48
Метафос0,350,480,89
  • В системе гексан : ацетон (1 : 2) RFсайфоса 0,40.

Значительную группу фосфорорганических пестицидов представляют собой тиофосфаты. Для хроматографического разделения тиофосфатов пользуются системами растворителей средней полярности. В качестве сорбента служат преимущественно силикагель. Метод определения антио и фосфамида в кормах основан на извлечении их хлороформом с последующей очисткой экстракта. Хроматографическое разделение проводят на силикагеле в системе растворителей хлороформ-ацетон (9 : 1).

Для обнаружения антио и фосфамида применяют аммиачно-ацетоновый раствор нитрата серебра. Значения RF: для антио – 0,72; фосфамида – 0,45 [3].

Фосфорорганические пестициды (карбофос, метафос, фосфамид, фталофос) определяли в лекарственных растениях на газовом хроматографе «Кристалл 2000» [3].

Заключение. Из литературных данных и собственных экспериментальных исследований следует, что тонкослойная хроматография (ТСХ) является экспресс-методом анализа химических соединений различных классов. ТСХ широко используется в медицине, фармации, ветеринарии, токсикологических исследованиях и других областях.

ЛИТЕРАТУРА:

1. Березкин В.Г. О вкладе Н.А. Измайлова и М.С. Шрайбер в развитие тонкослойной хроматографии. // ЖАХ. – 2008. – т.63, №4, с. 438–443;

2. Новый справочник химика и технолога. Аналитическая химия. – СПб.: НПО «Мир и семья», ч.II, 2003. С. 338–340;

3. Кадырова Р.Г. Тонкослойная хроматография. Идентификация и разделение углеводов, витаминов и токсичных соединений: Монография. – Казань: Казан.гос.энерг.ун-т, 2010, – 96 с.

4. Сумина Е.Г., Штыков С.Н., Березкин В.Г., и др. Новый метод тонкослойной хроматографии с управляемой газовой фазой. // ЖАХ – 2009. – т.64, №12, с.1256–1264; 5. Пат. 2101705. Россия. RUCl. (6G01 № 33/50).12.01.95. Способ определения галактозы в сыворотке крови / Р.Г. Кадырова, М.Г. Зухрабов;

6. Шаршунова М. Тонкослойная хроматография в фармации и клинической биохимии. – М.: Мир. ч. II, 1980. с. 382–387, с.510–519.;

7. Темердашев З.А., Киселева Н.В., Клищенко Р.А., Удалов А.В. Разделение и идентификация соединений ряда фенотиазина методом тонкослойной хроматографии. // ЖАХ. – 2006. – т. 61, № 1. с. 6–9;

8. Бородина Е.В., Китаева Т.А., Сафонова Е.Ф., Селеменев В.Ф., Назарова А.А. Определение a-токоферола и эргокальцеферола методом тонкослойной хроматографии.// ЖАХ. – 2007. – т.62, № 11, с.1181–1185;

9. Другов Ю.С., Беликов А.Б., Дьякова Г.А., Тульчинский В.М. Методы анализа загрязнений воздуха. – М.: Химия, 1984. с. 232–253.;

10. Гранберг И.И. Органическая химия. – М.: Дрофа, 2002. с.569–588.;

11. Хроматография. Практическое приложение метода. ч.2. пер. с анг.(Ш. Чармс, Л.Фишбейн, Дж. Вагман и др.) / Под ред. Э.Хефтмана. – М.: Мир, 422 с.;

12. Тремасов М.Я., Папуниди К.Х., Степанов В.И., Шангараев Н.Г, Иванов А.В. Принципы диагностики отравлений животных. // Ветеринария. – 2010. – № 6.56–58 с.

13. Смирнов А.М. Достижения и актуальные проблемы ветеринарной фармакологии и токсикологии. // Ветеринария.–2010. – №2. 3–6 с.

14. Березкин В.Г. Новый подход к определению величин относительного удерживания в тонкослойной жидкостной хроматографии. // ЖАХ.– 2007. т.62, №4 406–408 с.

Читайте также:  Анализ крови на герпес в челябинске

ТОНКОСЛОЙНАЯ ХРОМАТОГРАФИЯ –  ЭКСПРЕСС МЕТОД АНАЛИЗА ХИМИЧЕСКИХ СОЕДИНЕНИЙ

Кабиров Г.Ф., Кадырова Р.Г., Муллахметов Р.Р.

Резюме

Тонкослойная хроматография (ТСХ) является экспресс-методом анализа химических соединений различных классов. ТСХ широко используется в медицине, фармации, ветеринарии, токсикологических исследованиях и других областях.

THIN-LAYER CHROMATOGRAPHY –EXPRESS METHOD OF CHEMIC AL COMPOUNDS ANALYSIS

Kabirov G.F., Kadyrova R.G., Mullakhmetov R.R.

Summary

Thin-layer chromatography (TLCH) is an express method of chemical compounds analysis of different classes. Thin-layer chromatography is widely used in medicine, pharmaceutics, veterinary, toxicologic investigations and other spheres of science.

Документ для скачивания расположен по ссылке ниже.

Источник

Информация об исследовании

Аминокислоты — органические соединения, являющиеся основной составляющей частью протеинов (белков). Нарушение обмена аминокислот является причиной многих заболеваний (печени и почек). Анализ аминокислот (мочи и крови) является основным средством оценки степени усвоения пищевого белка, а также метаболического дисбаланса, лежащего в основе многих хронических нарушений.

Биоматериалом для комплексного анализа на аминокислоты в Лаборатории Гемотест может служить кровь или моча.

Исследуется следующие незаменимые аминокислоты: аланин, аргинин,  аспарагиновая кислота,  цитруллин,  глутаминовая кислота,  глицин,  метионин,  орнитин, фенилаланин,  тирозин,  валин,  лейцин, изолейцин,   гидроксипролин,  серин,  аспарагин,    α-аминоадипиновая кислота,   глутамин,  β-аланин, таурин,  гистидин,  треонин,   1-метилгистидин,  3-метилгистидин,  γ-аминомасляная кислота,  β-аминоизомасляная кислота,  α-аминомасляная кислота,   пролин,  цистатионин, лизин,  цистин, цистеиновая кислота.

Аланин – важный источник энергии для головного мозга и центральной нервной системы; укрепляет иммунную систему путем выработки антител;активно участвует в метаболизме сахаров иорганических кислот. Может быть сырьем для синтеза глюкозы в организме, это делает его важным источником энергии и регулятором уровня сахара в крови.

Снижение концентрации: хронические болезни почек, кетотическая гипогликемия.

Повышение концентрации: гипераланинемия, цитруллинемия (умеренное повышение), болезнь Кушинга, подагра, гипероротининемия, гистидиемия, дефицит пируваткарбоксилазы,лизинурическая белковая непереносимость.

Аргинин является условно заменимой аминокислотой. Участвует в цикле переаминирования и выведения из организма конечного азота, то есть продукта распада отработанных белков. От мощности работы цикла (орнитин — цитруллин — аргинин) зависит способность организма создавать мочевину и очищаться от белковых шлаков.

Снижение концентрации :3 дня после оперативного вмешательства на брюшной полости, хроническая почечная недостаточность, ревматоидный артрит.

Повышение концентрации: гипераргининемия, в некоторых случаях гиперинсулинемии II типа.

Аспарагиновая кислота входит в состав белков, играет важную роль в реакциях цикла мочевины и переа-минирования, участвует в биосинтезе пуринов и пиримидинов.

Снижение концентрации: 1 сутки после оперативного вмешательства.

Повышение концентрации: моча – дикарбоксильная аминоацидурия.

Цитруллин повышает энергообеспечение, стимулирует иммунную систему, в процессах обмена веществ превращается в L-аргинин. Обезвреживает аммиак,  повреждающий клетки печени.

Повышение концентрации цитруллина: цитруллинемия, болезни печени, интоксикация аммонием, дефицит пируват-карбоксилазы, лизинурическое нарушение толерантности к белку.

Моча — цитруллинемия, болезнь Хартнупа, аргининосукцинат-ацидурия.

Глутаминовая кислота является нейромедиатором, передающим импульсы в центральной нервной системе. Играет важную роль в углеводном обмене и способствует проникновению кальция через гематоэнцефалический барьер.  Снижение концентрации: гистидинемия, хроническая почечная недостаточность.

Повышение концентрации: рак поджелудочной железы, подагра, глутаминовая ,ацидурия, ревматоидный артрит. Моча – дикарбоксильная аминоацидурия.

Глицин является регулятором обмена веществ, нормализует процессы возбуждения и торможения в центральной нервной системе, обладает антистрессорным эффектом, повышает умственную работоспособность.

Снижение концентрации: подагра, сахарный диабет.

Повышение концентрации: септицемия, гипогликемия, гипераммониемия 1 типа, тяжелые ожоги, голодание, пропионовая ацидемия, метилмалоновая ацидемия, хроническая почечная недостаточность. Моча – гипогликемия, цистинурия, болезнь Хартнупа, беременность, гиперпролинемия,глицинурия, ревматоидный артрит.

Метионин незаменимая аминокислота, помогающая переработке жиров, предотвращая ихотложение в печени и стенках артерий. Синтез таурина и цистеина зависит от количества метионина в организме. Способствует пищеварению, обеспечивает дезинтоксикационныепроцессы, уменьшает мышечную слабость, защищает от воздействия радиации,полезна при остеопорозе и химической аллергии.

Снижение концентрации: гомоцистинурия, нарушение белкового питания.

Повышение концентрации: карциноидный синдром, гомоцистинурия, гиперметионинемия, тирозинемия,  тяжелые заболевания печени.

Орнитин помогает высвобождению гормона роста, который способствует сжиганию жиров в организме. Необходим для иммунной системы, участвует в дезинтоксикационных процессах и восстановлении пече-ночных клеток.

Снижение концентрации: карциноидный синдром, хроническая почечная недостаточность.

Повышение концентрации: спиральная атрофия хориоидной оболочки и сетчатки, тяжелые ожоги,гемолиз.

Фенилаланин — незаменимая аминокислота, в организме она может превращаться в  тирозин, который, в свою очередь, используется в синтезе двух основных нейромедиаторов: допамина и норадреналина. Влияет на настроение, уменьшает боль, улучшает память и способность к обучению, подавляет аппетит.

Повышение концентрации: преходящая тирозинемия новорожденных, гиперфенилаланинемия,сепсис, пе-ченочная энцефалопатия, вирусный гепатит, фенилкетонурия.

Тирозин является предшественником нейромедиаторов норадреналина и дофамина.Участвует в регуляциинастроения; недостаток тирозина приводит к дефициту норадреналина, что приводит к депрессии. Подавляет аппетит,  уменьшает отложения жиров, способствует выработке мелатонина и улучшает функции надпочечников, щитовидной железы и гипофиза, также участвует в обмене фенилаланина. Тиреоидные гормоны образуются при при-соединении к тирозину атомов йода.

Снижение концентрации: поликистоз почек, гипотермия, фенилкетонурия, хроническая почечная недоста-точность, карциноидный синдром, микседема, гипотиреоидизм, ревматоидный артрит.

Повышение концентрации: гипертирозинемия, гипертиреоидизм, сепсис.

Валин незаменимая аминокислота, оказывающая стимулирующее действие. Необходима для метаболизма в мышцах, восстановления поврежденных тканей и для поддержания нормального обмена  азота  в  организме, может быть использован мышцами в качестве источника энергии. 

Снижение концентрации: гиперинсулинизм, печеночная энцефалопатия.

Повышение концентрации: кетоацидурия, гипервалинемия,недостаточное белковое питание, карциноидный синдром, острое голодание.

Лейцин и изолейцин — защищают мышечные ткани и являются источниками энергии, а также способствуют восстановлению костей, кожи, мышц. Способны понижать уровень сахара в крови и стимулировать  выделение гормона роста.

Снижение концентрации: острое голодание, гиперинсулинизм, печеночная энцефалопатия.

Повышение концентрации: кетоацидурия, ожирение, голодание, вирусный гепатит.

Гидроксипролин содержится в тканях практически всего организма, входит в состав коллагена,  на  долю  которого приходится большая часть белка в организме млекопитающих. Синтез  гидроксипролина  нару- шается при дефиците витамина С.

Повышение концентрации: гидроксипролинемия, уремия, цирроз печени.

Серин относится к группе заменимых аминокислот, участвует в образовании активных центров ряда ферментов, обеспечивая их функцию. Важен в биосинтезе других заменимых  аминокислот :  глицина,  цистеина, метионина, триптофана.Серин является исходным продуктом синтеза пуриновых и пиримидиновых  оснований, сфинголипидов, этаноламина, и других важных продуктов обмена веществ.

Снижение концентрации: недостаточность фосфоглицерат дегидрогеназы, подагра.

Повышение концентрации серина: непереносимость белка. Моча – ожоги, болезнь Хартнупа.

Аспарагин необходим для поддержания баланса в процессах, происходящих в центральной нервной

системе; препятствует как чрезмерному возбуждению, так и излишнему торможению, участвует в процессах синтеза аминокислот в печени.

Повышение концентрации: ожоги, болезнь Хартнупа, цистиноз.

Альфа-аминоадипиновая кислота — метаболит основных биохимических путей лизина.

Повышение концентрации: гиперлизинемия, альфа-аминоадипиновая ацидурия, альфа-кетоадипиновая ацидурия, синдром Рея.

Глутамин  выполняет ряд жизненно важных функций в организме: участвует в синтезе аминокислот, углеводов, нуклеиновых кислот, цАМФ и ц-ГМФ, фолиевой кислоты, ферментов, осуществляющих окислительно-восстановительные реакции (НАД), серотонина, н-аминобензойной кислоты; обезвреживает аммиак; превращается в аминомасляную кислоту (ГАМК); способен повышать проницаемость мышечных клеток для ионов калия.

Читайте также:  Повышенное содержание эозинофилов в анализе крови

Снижение концентрации глутамина: ревматоидный артрит

Повышение концентрации: Кровь – Гипераммониемия, вызванная следующими причинами: печеночная кома, синдром Рея, менингит, кровоизлияние в мозг, дефекты цикла мочевины, недостаточность орнитинтранскарбамилазы, карбамоилфосфатсинтазы, цитруллинемия, аргининсукциновая ацидурия, гиперорнитинемия,гипераммониемия, гомоцитруллинемия (HHH syndrome), в некоторых случаях гиперлизиемия 1 типа, лизинурическая белковая непереносимость. Моча – Болезнь Хартнупа, генерализованная аминоацидурия, ревматоидый артрит.

β-аланин – является единственной бета-аминокислотой, образуется из дигидроурацила и карнозина.

Повышение концентрации: гипер-β -аланинемия.

Таурин — способствуют эмульгированию жиров в кишечнике, обладает противосудорожной активностью, оказывает кардиотропное действие, улучшает энергетические процессы, стимулирует репаративные процессы при дистрофических заболеваниях и процессах, сопровождающихся нарушением метаболизма тканей глаза, способствует нормализации функции клеточных мембран и улучшению обменных процессов.

Снижение концентрации таурина: Кровь — Маниакально-депрессивный синдром, депрессивные неврозы

Повышение концентрации таурина: Моча — Сепсис, гипер-β-аланинемия, недостаточность фолиевой кислоты (В9), первый триместр беременности, ожоги.

Гистидин входит в состав активных центров множества ферментов, является предшественником в био-синтезе гистамина. Способствует росту и восстановлению тканей. В большом количестве содержится в гемоглобине; используется при лечении ревматоидных артритов, аллергий, язв и анемии. Недостаток гистидина может вызвать ослабление слуха.

Снижение концентрации гистидина:   Ревматоидный артрит

Повышение концентрации гистидина: Гистидинемия, беременность, болезнь Хартнупа, генерализован-

ная аминоацидурия.

Треонин — это незаменимая аминокислота, способствующая поддержанию нормального белкового обмена в организме, важна для синтеза коллагена и эластина, помогает работе печени, участвует в обмене жиров,  стимулирует иммунитет. 

Снижение концентрации треонина: Хроническая почечная недостаточность, ревматоидный артрит.

Повышение концентрации треонина: Болезнь Хартнупа, беременность, ожоги, гепатолентикулярная дегенерация.

1-метилгистидин основное производное ансерина. Фермент карнозиназа превращает ансерин в β-аланин и 1-метилгистидин. Высокие уровни 1-метилгистидина, как правило, подавляют фермент карнозиназу и увеличивают концентрации  ансерина. Уменьшение активности карнозиназ также встречается у пациентов с болезнью Паркинсона, рассеянным склерозом и у пациентов после инсульта. Дефицит витамина Е может привести к 1–метилгистидинурии, вследствие увеличения окислительных эффектов в скелетных мышцах.

Повышение концентрации: хроническая почечная недостаточность, мясная диета.

3-метигистидин  является показателем уровня распада белков в мышцах.

Снижение концентрации: голодание, диета.

Повышение концентрации: хроническая почечная недостаточность, ожоги, множественные травмы.

Гамма-аминомасляная кислота — содержится в ЦНС и принимает участие в нейромедиаторных и метаболических процессах в мозге. Лиганды рецепторов ГАМК рассматриваются, как потенциальные средства для лечения различных расстройств психики и центральной нервной системы, к которым относятся болезнь Паркинсона и Альцгеймера, расстройства сна (бессонница, нарколепсия), эпилепсия. Под влиянием ГАМК активируются также энергетические процессы мозга, повышается дыхательная активность тканей, улучшается утилизация мозгом глюкозы, улучшается кровоснабжение.

Бета (β) — аминоизомасляная кислота — небелковая аминокислота является продуктом катаболизма тимина и валина. Повышение концентрации: различные типы новообразований, болезни, сопровождающиеся усиленным разрушением нуклеиновых кислот в тканях, синдром Дауна, белковое недоедание, гипер-бета-аланинемия, бета-аминоизомасляная  ацидурия, отравление свинцом.

Альфа (α) -аминомасляная кислота является основным промежуточным продуктом биосинтеза офталь-мовой кислоты. Повышение концентрации: неспецифические аминоацидурии, голодание.

Пролин — одна из двадцати протеиногенных аминокислот, входит в состав всех белков всех организмов.

Снижение концентрации: Хорея Хантингтона, ожоги

Повышение концентрации: Кровь – гиперпролинемия тип 1 (недостаточность пролиноксидазы), гиперпролинемия тип 2 (недостаточность пирролин-5-карбоксилат дегидрогеназы), недостаточность белкового питания у новорожденных. Моча – гиперпролиемия 1 и 2 типов, синдром Джозефа (тяжелая пролинурия), карциноидный синдром, иминоглицинурия, болезнь Вильсона-Коновалова (гепатолентикулярная дегенерация).

Цистатионин — cepоcoдержащая аминокислота, участвует в биосинтезе цистеина изметионина и серина.

Лизин – это незаменимая аминокислота, входящая в состав практически любых белков, необходима для роста, восстановления тканей, производства антител, гормонов, ферментов, альбуминов, оказывает противовирусное действие, поддерживает уровень энергии, участвует в формировании коллагена и восстановлении тканей, улучшает усвоение кальция из крови и транспорт его в костную ткань.

Снижение концентрации: карциноидный синдром, лизинурическая протеиноваянепереносимость.

Повышение концентраций: Кровь – гиперлизинемия, глутаровая ацидемия тип 2. Моча – цистинурия, гиперлизинемия, первый триместр беременности, ожоги.

Цистин  в  организме является важной частью белков, таких как иммуноглобулины, инсулин и соматостатин, укрепляет соединительную ткань. Снижение концентрации цистина: белковое голодание, ожоги.Повышение концентраций цистина: Кровь — сепсис, хроническая почечная недостаточность. Моча – Цистиноз, цистинурия, цистинлизинурия, первый триместр беременности.

Цистеиновая кислота — серосодержащая аминокислота. Промежуточный продукт обмена цистеина и цистина. Принимает участие в реакциях переаминирования, является одним из предшественников таурина.

В организме человека синтезируется лишь половина необходимых аминокислот, а остальные амино-кислоты – незаменимые (аргинин, валин, гистидин, изолейцин, лейцин, лизин, метионин, треонин, трип-тофан, фенилаланин) — должны поступать с пищей. Исключение из рациона какой-либо незаменимой аминокислоты из рациона ведет к развитию отрицательного азотистого баланса, клинически проявляющегося нарушением функций нервной системы, мышечной слабостью и другими признаками патологии обмена веществ и энергии.

Показания к назначению анализа:

  • Диагностика заболеваний, связанных с нарушением аминокислотного обмена.
  • Оценка состояния организма человека.

Необходимо соблюдать общие правила подготовки. Кровь на исследование необходимо сдавать натощак. Между последним приёмом пищи и взятием крови должно пройти не менее 8 часов.

Мочу для исследования собрать среднюю утреннюю порцию.

Источник