Общий анализ крови при облучении
Лейкоциты. Количественные изменеия.
I фаза (первые минуты, часы) — кратковременное незначительное уменьшение числа лейкоцитов.
II фаза (через 6-8 ч) — увеличение на 10… 15 % от исходного уровня.
III фаза (к концу суток) — количество лейкоцитов резко снижается до исходного уровня и удерживается на нем.
Продолжительность возрастания числа лейкоцитов зависит от дозы облучения. (При сублетальных дозах — увеличение до 3-5 сут, а при больших — его нет). Наиболее выраженное снижение количества лейкоцитов при облучении взрослых животных полулетальными дозами отмечается на 2…3-й неделе после воздействия. В данный период число лейкоцитов снижается в 3 раза и более по отношению к нормальным показателям. Восстановительный период, в течение которого количество лейкоцитов достигает исходной величины, составляет 2…3 мес.
Причина гибели лейкоцитов в первые 1-2 ч – из-за следствий вегетативно-сосудистых реакций перераспределения крови, так как гибель клеток в данный период незначительная и это не может резко влиять на общее количество лейкоцитов. В последующие сроки изменения числа лейкоцитов главным образом связаны с нарушениями костномозгового кроветворения. Степень и фазность изменения общего количества лейкоцитов при действии ИИ находятся в прямой зависимости от дозы радиации. При больших дозах первые две фазы проявляются в слабой степени, а фаза угнетения (уменьшения) наступает раньше и выражена сильнее. У молодых животных изменение содержания лейкоцитов наступает раньше и от меньших доз радиации, чем у взрослых, а восстановление показателей происходит быстрее и относительно полнее.
Лимфоциты. Наиболее радиочувствительной клеткой крови является лимфоцит, поэтому изменения количества лимфоцитов — объективный показатель степени лучевого поражения организма. Продолжительность жизни лимфоцитов в крови здоровых животных может быть от нескольких часов до 1-2 сут.
При воздействии радиации уменьшается в первую очередь содержание лимфоцитов по сравнению с другими видами лейкоцитов причем фазности в первоначальных изменениях не наблюдается. Уменьшение содержания лимфоцитов отмечается уже при облучение дозой в 1 Гр. По мере увеличения дозы лимфопенический эффект усиливается. При облучении дозой ЛД50/30 наибольшее снижение количества лимфоцитов наблюдается через 1…3 сут. В этот период отмечаются и морфологические изменения лимфоцитарных клеток, нарушается соотношение малых, средних и больших форм, начинают преобладать малые лимфоциты, появляются двухъядерные клетки, зернистость и вакуолизация ядра и протоплазмы, изменяется активность ферментов.
Изменения лимфоцитов в крови обычно соответствуют изменениям их в селезенке, лимфоузлах, лимфофолликулах стенки кишечника, зобной железе и других органах.
Нейтрофилы. У многих млекопитающих нейтрофилы составляют наибольшую часть лейкоцитов (до 60…70 %). У животных после лучевого воздействия в изменении количества нейтрофильных лейкоцитов выделяют 5 фаз (периодов):
I — фаза первоначального нейтрофилеза, наступающая в результате быстрого выхода клеток из костного мозга. Степень выраженности и продолжительности ее зависит от дозы облучения, вида животных и других факторов;
II — фаза первого опустошения. Число нейтрофилов в этот период уменьшается до 10…20 % от исходного уровня, а в тяжелых случаях — еще больше, продолжаясь до гибели животного. Появление этой фазы объясняется прекращением выхода нейтрофилов из костного мозга и гибелью клеток вне сосудов;
III — фаза абортивного подъема, максимум ее отмечается на 7… 17-й день. В данный период количество нейтрофилов может достигать 70…80 % исходного значения. К этому времени возобновляется пролиферация выживших костномозговых клеток, большая часть которых была повреждена и стала неспособной к многократному полноценному делению. Прекращается митоз клеток, что приводит ко второму опустошению;
IV — фаза второго опустошения. Обычно оно бывает выражено сильнее и более продолжительно, чем во второй фазе;
V — фаза восстановления, развивается медленно и характеризуется началом репопуляции костного мозга.
Одновременно с фазными изменениями общего количества нейтрофилов изменяется и соотношение форм клеток. В фазы подъема увеличивается процент молодых форм — юных и палочкоядерных, т. е. отмечается сдвиг влево. В периоды опустошения преобладают сегментоядерные формы — сдвиг ядра лейкоцитарной формулы вправо. В эти периоды в крови появляются патологические формы — клетки с гиперсегментированными, пикнотичными или лизирующими ядрами, с вакуолями в ядре и цитоплазме, наступают биохимические изменения.
Сроки восстановительных процессов нейтрофильных (псевдоэозинофильных) клеток по сравнению с лимфоцитами растянуты и могут проходить со значительными колебаниями.
Эозинофилы. При действии сублетальных доз больших сдвигов в содержании эозинофилов в крови не установлено. Облучение в полулетальных дозах приводит к снижению их количества, за которым следует медленное восстановление. В хронических случаях радиационного воздействия часто развивается эозинофилез.
Базофилы. Базофилы характеризуются высокой радиочувствительностью. При облучении дозами 1 Гр и выше в течение первых суток резко падает их количество; на высоте лучевой реакции они из крови исчезают. Относительно других форменных элементов крови восстановительный период количества этих клеток затягивается.
Моноциты. При облучении содержание моноцитов изменяется значительно меньше, чем других групп лейкоцитов. При облучении в полулетальных дозах количество моноцитов уменьшается на третьи сутки с максимумом депрессии к концу недели, после чего содержание их восстанавливается.
Эритроциты. Относительно малая по сравнению с лейкоцитами РЧ эритроцитов. При облучении животных в сублетальных дозах количество эритроцитов в крови практически не изменяется, не происходит также существенного снижения уровня гемоглобина. Однако при исследовании ретикулоцитов выявляются изменения возрастного состава эритроцитарных клеток. Так, ретикулоцитов у облученных животных на вторые-третьи сутки становится меньше на 10…20 %, а с пятых суток содержание их увеличивается. До нормы или выше; периодические колебания удерживаются на таком уровне до выздоровления. Повышение количества ретикулоцитов в крови облученного организма свидетельствует об активации эритропоэза, сокращении продолжительности жизни эритроцитов и нарушении их функционально-морфологических структур. Ускорение эритропоэза при облучении сублетальными дозами обеспечивает достаточно высокую компенсацию и восстановление картины красной крови. В случае облучения летальными дозами снижение содержания эритроцитов в крови ускоряется вследствие кровоизлияний, в результате чего возникает так называемая постгеморрагическая анемия.
Изменения в картине красной крови наиболее характерны при воздействии полулетальными дозами. В течение первых трех суток после облучения наблюдается увеличение количества клеток и содержания гемоглобина в 1 мм3 крови на 10…15 %, затем следует период развития анемии с максимумом проявления ее на 15…20-е сутки, когда содержание эритроцитов и гемоглобина снижается в 2…3 раза и более против нормы. Одновременно с количественными сдвигами наблюдаются морфологические и биохимические нарушения в эритроцитах. В период анемии появляются пойкилоциты, клетки с пикнотичными ядрами, двухъядерные, с наличием вакуолизации ядра, цитоплазмы и токсической зернистости в ней. Увеличиваются средние размеры эритроцитов; в крови появляются в некоторых случаях эритро- и нормобласты. Цветной показатель или остается без изменений, или несколько увеличивается. Восстанавливается картина крови у животных медленно, в течение 2… 5 мес.
Тромбоциты. По радиочувствительности тромбоциты занимают среднее положение между лейкоцитами и эритроцитами. При облучении среднелетальными дозами количество тромбоцитов до 5-го дня удерживается относительно на одном уровне, а затем резко падает, опускаясь до минимума на 9… 10-е сутки. В эти сроки у животных, больных острой лучевой болезнью, появляются геморрагии, а при больших дозах развивается геморрагический синдром.
В облученном организме тромбоциты помимо количественных сдвигов претерпевают и качественные изменения, которые приводят к нарушениям процессов поглощения протромбина и продолжительности свертывания крови, рекальцификации плазмы и другим дефектам.
Восстановление числа тромбоцитов наблюдается на 35…45-и день после облучения.
Источник
КАТЕГОРИИ:
Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)
БИОХИМИЯ, ФИЗИОЛОГИЯ И БИОТЕХНОЛОГИЯ
СЕКЦИЯ № 3
В. В. Валетов1, Е. И. Дегтярева2
1УО «Мозырский государственный педагогический университет
имени И. П. Шамякина», г. Мозырь
2УО «Гомельский государственный медицинский университет»,
г. Гомель, е-mail: elena.degtyaryova@tut.by
Введение. Радиочувствительность клетки прямо пропорциональна ее митотической активности и обратно пропорциональна степени ее дифференциации. Наиболее чувствительными оказываются ткани с интенсивным делением: эпителиальная, кровь. Наиболее радиорезистентными являются ткани, утратившие способность к делению: мышечная, нервная, костная и хрящевая ткани. В клетке радиация может вызвать два вида изменений: клеточных структур и генетического материала (генные мутации и хромосомные аберрации). Соответственно выделяют два вида радиационной гибели клеток: интерфазная (до вступления клеток в митоз)
и митотическая. В первом случае предполагают, что смерть наступает в результате окисления липидов клетки и образования радиотоксинов, которые вызывают иммунные реакции, склеивание клеток и их разрушение, а также торможение клеточного деления и повреждения хромосомного аппарата. Во втором случае наступает либо гибель потомков мутантных клеток вследствие их нежизнеспособности, либо невозможности расхождения хромосом в анафазу вследствие изменений структуры ДНК клеток. Какое поколение потомков таких клеток погибнет, зависит от значимости потерянного генетического материала. Выживаемость клеток зависит также от эффективности системы репарации, которая снижается, если повреждается в результате облучения.
К тому же поврежденный ген может быть недоступен для восстановления, находясь
в неактивном состоянии. Цитоплазма клеток намного менее чувствительна к радиации, чем ядро. Однако мутации могут быть не смертельными для клетки, в этом случае пораженные клетки увеличивают риск появления ракового заболевания. Наиболее частыми являются лейкозы, возникающие только спустя 2 года после облучения
и позже. Через 6–7 лет вероятность заболеть лейкозом наиболее велика, а спустя 25 лет риск заболеть лейкозом практически равен нулю. Другие виды рака могут развиваться только через 10 лет после облучения [1].
Для всех клеток организма механизм воздействия радиации одинаков, он заключается в повреждении клетки прямым или косвенным образом. Прямое воздействие заключается в изменении структуры молекул, косвенное осуществляется через механизм радиолиза воды. В результате получаются ионы водорода
и гидроксильные группы, которые мгновенно реагируют с веществами клетки.
В присутствии кислорода образуются и другие продукты радиолиза, обладающие окислительными свойствами.
Следует также принимать во внимание наличие модифицирующих факторов – сенсибилизаторов (веществ, увеличивающих эффект излучения) и радиопротекторов. Повышенное содержание кислорода в клетках во время облучения усиливает действие излучения, что объясняется усилением взаимодействия кислорода со свободными радикалами клетки и делает их недоступными для репарации. Сниженное содержание кислорода во время облучения способствует уменьшению его пагубного воздействия на организм. Известно много радиопротекторов, но они проявляют свое действие только
в момент облучения и в ближайшие сроки после него [2].
Радиочувствительность организма зависит от многих факторов. Чем больше степень организации животного, чем более дифференцированы его ткани, тем больше оно чувствительно к радиации. Радиация вызывает различного рода неблагоприятные изменения в организме человека. К ближайшим последствиям относят острую лучевую болезнь (ОЛБ) и хроническую лучевую болезнь (ХЛБ), к отдаленным – злокачественные опухоли, снижение продолжительности жизни, атеросклероз и другие явления, являющиеся признаками старения организма. ОЛБ возникает при дозах более 2 Гр, полученных одномоментно или в течение нескольких дней, ХЛБ – при облучении малыми дозами 0,1–0,5 Гр/сут после накопления суммарной дозы 0,7–1 Гр, т. е. через 140–1000 дней [3].
Последствия облучения зависят не только от дозы, но и от вида облучения – общее оно или местное, внешнее или от инкорпорированных радионуклидов;
от временного фактора (однократное, повторное, пролонгированное, хроническое);
от равномерности облучения, величины облучаемого объема и локализации облученного участка, от соотношения радиопротекторов и сенсибилизаторов
в организме.
Целью работы явилось изучение влияния радиоактивного излучения на показатели периферической крови людей.
Материалы и методика исследований.В ходе проведенной работы обследовались 180 мужчин в возрасте от 20 до 60 лет, подвергшихся радиоактивному облучению в дозах до 80 бэр.
Определяли количество эритроцитов, концентрацию гемоглобина, СОЭ, количество тромбоцитов, лейкоцитов и лейкоцитарную формулу.
Количество эритроцитов, лейкоцитов, тромбоцитов, концентрация гемоглобина определялось на гематологическом анализаторе АВХ MICROS 60-СТ/ОТ, СОЭ – по Панченкову, параметры лейкоцитарной формулы и количество тромбоцитов определялись в мазке, окрашиваемом по Романовскому-Гимзе в течении 40 мин.
В массиве обследованных было выделено 3 возрастные группы: 1-ю составляли мужчины в возрасте от 20 до 40 лет , 2-я – 40–50 лет, 3-я – 50–60 лет.
Результаты исследований и их обсуждение.Организм человека до 50 лет характеризуется относительно постоянным составом внутренней среды, затем начинаются нарушения гомеостаза. С возрастом снижается количество эритроцитов, устанавливаясь к 80–90 годам на нижней границе нормы, падает число ретикулоцитов, нарастает диаметр эритроцитов и амплитуда анизоцитоза. Эти изменения объясняются уменьшением массы кроветворящего красного костного мозга, составляющей
у 80-летнего 1/20 часть красного костного мозга 20-летнего. Снижается скорость разрушения крови, связанная с возрастной инволюцией селезенки. Концентрация гемоглобина у лиц пожилого и старческого возраста находится в пределах нижней границы нормы, выведенной для зрелого возраста. С возрастом падает концентрация альбуминов и повышается концентрация глобулинов, что связано с изменением белок-синтезирующей функции печени и большей проницаемостью стенок капилляров для альбуминов, чем для глобулинов. СОЭ имеет тенденцию к повышению между 40–49 годами, когда ее величина лишь в 79% случаев ниже 10 мм/ч. Затем она постепенно увеличивается, после 60 лет величина СОЭ ниже 10 мм/ч выявляется у 12,5% людей. Снижение СОЭ можно объяснить снижением количества и потерей электрического потенциала эритроцитов, повышением концентрации глобулинов. Количество лейкоцитов в возрасте 90 лет составляет около 4 тыс./мкл. В глубокой старости количество лимфоцитов понижается на 24%. Количество тромбоцитов к старости также уменьшается [4].
Анализ изучаемых показателей крови с учетом возраста позволил установить следующие закономерности.
Статистически значимое снижение числа эритроцитов до 4,60±0,038 млн 1 мл установлено лишь для 1-й возрастной группы. В двух других возрастных группах изменения этого показателя были разнонаправленными и статистически незначимыми.
Изменения содержания гемоглобина повторяют в целом динамику количества эритроцитов, что обусловлено тесной связью этих показателей. В 1-й возрастной группе после облучения концентрация гемоглобина снижается до 141,6±1,26 г/л при возрастной норме 147,4±1,05. В двух других возрастных группах достоверного уменьшения концентрации гемоглобина не отмечено.
Можно предположить, что уменьшение числа эритроцитов и содержания гемоглобина в первой возрастной группе связано с низкой устойчивостью молодого организма к повреждающим факторам окружающей среды, в том числе и к радиации.
Скорость оседания эритроцитов повышается во всех возрастных группах, что обусловлено, вероятно, уменьшением количества эритроцитов и изменениями физико-химических свойств плазмы крови. Наибольший прирост наблюдается в старшей возрастной группе, достигая 6,8±1,24 мм/ч. С течением времени после облучения СОЭ несколько снижается, причем, заметна обратная зависимость эффективности процесса восстановления от возраста. Можно предположить, что восстановительные процессы в старших возрастных группах отчасти компенсируют встречное повышение СОЭ, обусловленное чисто возрастным фактором.
Относительно числа лейкоцитов и параметров лейкоцитарной формулы не выявлено значимых возрастных различий в силу значительной вариабельности этих показателей. Наблюдаемые возрастные различия указанных параметров не проявляют видимой закономерности.
С целью выяснения зависимости показателей крови от дозы испытуемые были разбиты на три группы в соответствии с полученной дозой облучения: менее 2 бэр,
2–10 бэр и более 10 бэр. Ни по одному из изучаемых показателей не выявлено зависимости от дозы облучения.
Заключение.Нами были установлены следующие изменения показателей периферической крови: снижение количества эритроцитов и тромбоцитов, уменьшение содержания гемоглобина, повышение СОЭ.
У людей, подвергшихся воздействию малых доз ионизирующего излучения,
не установлено зависимости изменений показателей периферической крови
от величины дозы.
Литература
1. Валетов, В. В. Физиологические аспекты кормления сельскохозяйственных животных: монография / Валетов В. В., Дегтярева Е. И. – Мозырь: УО МГПУ имени И.П. Шамякина. – 2013. – 88 с.
2. Сарасеко, Е. Г. Влияние особенностей торфяных почв республики Беларусь на качественный состав грубых кормов / Е. Г. Сарасеко, Е. И. Дегтярева // Современные экологические проблемы устойчивого развития Полесского региона и сопредельных территорий: наука, образование, культура: материалы V Междунар. науч.-практ. конф. Мозырь, 25–26 октября 2012. / УО МГПУ им. И.П. Шамякина; редкол.: О. П.Позывайло (отв. ред.) [и др.]. – Мозырь, 2012. — С. 272–275.
3. Гольдберг, Е. Д. Гематологические показатели у работников рентгенологических и радиологических отделений / Е. Д. Гольдберг, О. С. Голосов, К. Г. Потехин / Мед. вестник. – 1981. — № 5. – С. 49–54.
4. Акоев, И. Г. Отдаленные последствия облучения в системе крови / И. Г. Акоев // Мед. радиол. – 1998. – № 1. – С. 21–27.
ПОЛУЧЕНИЕ БИОЛОГИЧЕСКИ АКТИВНЫХ СОЕДИНЕНИЙ ИЗ КУТИКУЛЫ МАДАГАСКАРСКОГО ШИПЯЩЕГО ТАРАКАНА
(GROMPHADORINA GRANDIDIERI)
Дата добавления: 2017-01-14; Просмотров: 3747; Нарушение авторских прав?
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Рекомендуемые страницы:
Источник