Что такое кос в анализе крови

Что такое кос в анализе крови thumbnail

Понятие кислотно-основного состояния или равновесия (КОС) заключается в следующем: это довольно постоянная величина соотношения кислоты к основанию плазмы крови живого организма. Аналогичные ему названия – реакция, равновесие, равновесие кислот и щелочей. Показатель этот один из компонентов гомеостаза. Количественное определение такого равновесия исчисляется содержанием протонов, то есть концентрацией ионов водорода. Иначе это называется водородным показателем pH.

Кислотно-основное состояние (КОС) – важная характеристика крови. Оно колеблется в течение жизни, но не на критических показателях. Постоянство этой величины необходимо для полноценности метаболических процессов в организме, обеспечения нормального сохранения активности ферментов, а также интенсивности обмена веществ и его направленности.

Немного физики

кислотно основное состояние

Любая жидкость может быть охарактеризована как кислотная или щелочная. Зависит и определяется это содержанием в ней количества протонов (название свободных водородных ионов). Это же касается и крови. Сегодня кислотность любой жидкой среды определяется таким понятием, как водородный показатель — рН (power hydrogen — «сила водорода»). Шкала и определение рН (от 0 до 14) в 1908 г. была введена датским биохимиком и физиком Сереном Петером Лаурицем Сервисеном.

Нейтральная реакция жидкости – ее рН — равняется 7 единицам. При меньших его значениях говорят о повышении кислоты, большие значения превращают жидкость в щелочную.

Понятие о кислотно-основном состоянии организма и его постоянство поддерживается 2 составляющими – БР (буферные растворы или системы) и физиологической компенсацией за счет органов – почек, легких, печени.

Механизм

кислотно основное состояние крови

Патофизиология кислотно-основного состояния — любые ткани живого работающего организма всегда оказываются чувствительными к сдвигам pH в любую сторону. Если он превышен и реакция щелочная, тут же начинается разрушение клеток, белки сворачиваются (денатурируются), ферменты инактивируются, и организм может погибнуть.

Электролиты крови — кислоты, щелочи и соли, которые под воздействием воды распадаются на катионы и анионы. Постоянство или регуляция кислотно-основного состояния происходит за счет, как было сказано, буферных систем. Их основное предназначение – противодействие резким колебаниям содержания протонов.

Эти растворы имеют свойство держать уровень ионов водорода постоянным даже при добавлении к ним кислот или щелочей или при их разведении. Состав буфера – это смесь какой-либо слабой кислоты с ее же основанием, но с сильным анионом, то есть это кислотно-основная пара. Например, такой системой можно назвать карбонатную кислоту: Н2СО3 и NaHC03.

В крови постоянно действуют и существуют несколько основных буферных систем:

  1. Бикарбонатная (смесь Н2СО3 и НСО3) – занимает 53 % буферной емкости крови и является самой мощной.
  2. Система гемоглобин — состоит из оксигенированного гемоглобина (слабая кислота) и неоксигенированного (или дезоксигемоглобина). Это слабое основание – ННв-КНвО2) – 35 %. Оксигемоглобин в 80 раз больше отдает в среду протонов.
  3. Белковая буферная система – это, в первую очередь, альбумин крови, поэтому для внутренней среды клеток он главный. Данный буфер занимает всего 5-7 % от емкости крови. Работает он благодаря амфотерным свойствам белка. В кислой среде альбумин становится катионом, в щелочной – выступает как кислота. Такое свойство называется способностью к ионизации.
  4. Фосфатная система (дифосфат-монофосфат – NaH2РО4 и NaHPO4) – составляет 2-5 % плазмы крови.

Значение каждой буферной системы

кос кислотно основное состояние

Бикарбонатная буферная система (наиболее управляемая среди других) имеет особенно важное значение: при избытке протонов происходит реакция с ионами бикарбоната (HCO3−) и образуется Н2СО3 – угольная кислота. Это не что иное, как раствор углекислого газа в воде. Далее ее количество уменьшается за счет распада этой кислоты с образованием углекислого газа, выводимого легкими. Деятельность этого буфера имеет неразрывную связь с вентиляцией легких.

Гемоглобиновый буфер зависим от работы легких, связан с оксигенацией, то есть насыщения кислородом. Кислород потенцирует данный буфер, т. е. определяется активностью дыхательной системы.

Белковая система отвечает за нейтрализацию продуктов метаболизма.

Концентрация фосфатного буфера сосредоточена, в основном, в таком месте почек, как канальцы и внутриклеточном пространстве. Только от него зависит кислотно-основная реакция мочи — дигидрофосфат (H2PO4). А вот NaHCO3 в канальцах почек всасывается обратно.

Физиологические процессы компенсации

нарушение кислотно основного состояния

Значение работы почек в регуляции КОС выражено в том, что они связывают и выводят ионы водорода и возвращают в кровь ионы натрия и бикарбоната. Поэтому регуляция кислотно-основного состояния почками зависит от водно-солевого обмена. Метаболическая почечная компенсация работает медленно – компенсация наступает в течение 9-12 ч.

Что происходит в почечных канальцах: в них происходит секреция ионов водорода. Здесь они соединяются с ионами бикарбоната (NaHC03 и КНСОз). Образуется угольная кислота (Н2СО3). Она, в свою очередь, легко диссоциирует на углекислый газ и воду, при излишке которых они также выводятся легкими и почками. Одновременно высвободившиеся катионы натрия и калия эквивалентно заполняют канальцы снова, они опять участвуют в дальнейшем образовании бикарбонатов.

В результате всех этих превращений щелочность крови сохраняется. Минус только в медленности действия почек. Константа кислотно-основного состояния определяется также активной работой печени. Она окисляет большинство органических кислот, а неорганические удаляет вместе с желчью.

Лактат преобразуется в печени в гликоген (животный крахмал). Панкреатический, кишечный (щелочная реакция) и желудочный соки также участвуют в метаболической компенсации.

Кислотно-основное состояние крови человека в норме проявляет себя как слабощелочная жидкость. При этом рН артериальной крови равен 7,35-7,47, а венозной крови на 0,02 ниже. Кислота становится донором ионов водорода, основание их связывает и называется акцептором.

Легкие в поддержании постоянства КОС играют главную роль, потому что через них выделяется 95 % кислых валентностей в виде углекислоты.

В сутки выделяется легкими 15 тыс. ммоль углекислоты, а почки, к примеру, могут выделить всего 40-60 ммоль. То есть дыхание человека – это и есть работа легких в поддержании гомеостаза.

Недостаточная вентиляция легких повышает парциальное давление углекислого газа в альвеолярном воздухе и создается альвеолярная гиперкапния. Соответственно, увеличивается объем СО2 в артериальной крови и здесь также возникает уже артериальная гиперкапния. При слишком большом повышении PaCO2 или длительной гиперкапнии дыхательный центр угнетается с понижением его чувствительности к CO2.

При гипервентиляции легких картина противоположная и характеризуется она гипокапнией – альвеолярной и артериальной. Колебания углекислоты вызывает респираторные сдвиги кислотно-основного равновесия.

Легочный механизм компенсации происходит чрезвычайно быстро (коррекция изменений рН в щелочную сторону при ацидозе происходит буквально за 1-3 минуты) и является очень чувствительным. Гораздо быстрее действуют буферные системы – им нужно для компенсации всего 30 сек.

Виды нарушений

регуляция кислотно основного состояния

Они развиваются при многих патологических состояниях, и регуляторные механизмы в таких случаях могут не срабатывать. В зависимости от сдвига рН, могут развиться ацидоз и алкалоз. Причины смещения — дыхательные (респираторные) и метаболические (обменные) сдвиги. Соответственно, развивается алкалоз или ацидоз респираторный или метаболический. Системы регуляции кислотно-основного состояния крови стремятся скорее ликвидировать возникшие изменения, причем при респираторных нарушениях подключаются в помощь механизмы метаболической компенсации, а при метаболических нарушениях – респираторные.

Диагностика КОС

показатели кислотно основного состояния

Для анализа кислотно-основного состояния крови может браться из вены или пальца – любая. Дело в том, что кровь из пальца может считаться артериализованной, поскольку ее показатели близки к показателям крови из артерий, которые считаются наиболее пригодными и чистыми для исследований.

Капиллярную кровь собирают в стеклянные колбы объемом 50 мкл или специальные пробирки с антикоагулянтами.

Более постоянной считается артериальная. Объем забираемой крови – 0,1-0,2 мл – буквально несколько капель. Определение рН крови проводится электрометрическим способом с помощью стеклянных рН-электродов. Кислотность крови может определяться и другими способами: по цвету конъюнктивы (система В. Караваева), в домашних условиях.

Цвет конъюнктивы определяется оттягиванием нижнего века. Бледно-розовая конъюнктива – ацидоз, темно-розовая – алкалоз, яркая – норма.

Моча для определения не используется, рН организма она точно не покажет.

Методов в домашних условиях несколько: при помощи лакмусовой бумажки, электронного прибора, по цвету конъюнктивы и по нижнему давлению и пульсу.

Эти методы оперативные и могут использоваться в срочных случаях, хотя и не совсем точны по сравнению с лабораторными данными.

Для исследования газов крови и определения PaCO2 в крови используется метод Аструпа с одноименным электродом или электрод Северингхауса. Полученные значения рассчитывают с помощью номограммы.

Влияние кислотно-основных состояний крови

кислотно основное состояние определение

На этот счет имеются точные научные факты и доказательства. Исследование показателей кислотно-основного состояния крови подтверждают, что изменения pH больше, чем на 0,4, с жизнью несовместимы. Число ионов водорода в плазме в норме составляет 40 нмоль/л, размах – от 36 до 45. Это значение соответствует рН 7,4. О полной компенсации можно говорить при колебаниях рН в пределах 7,35-7,45.

Далее происходит уже нарушение кислотно-основного состояния и трактовка его может быть двоякой:

  1. Ацидоз — субкомпенсированный (рН 7,25-7,35), декомпенсированный (рН < 7,25).
  2. В отношении алкалоза — субкомпенсированный (рН 7,45-7,55), декомпенсированный (рН > 7,55).

Колебания рН выглядят как будто незначительными, но такое впечатление складывается из-за шкалы логарифмов. На самом деле разница даже всего лишь в единицу рН означает увеличение концентрации протонов в 10 раз.

Метаболические нарушения

Буферные основания (Buffer Base, ВВ) — сумма всех анионов в крови. Какие анионы могут содержаться в плазме — натрий, фосфор, хлор, калий и железо. Они связаны с уменьшением или увеличением нелетучих кислот в крови. А ВЕ – это разница между ВВ и должным содержанием (концентрацией) буферных оснований. Их количество от напряжения СО2 не зависит.

В норме содержание ВВ выражается как 48,0 ± 2,0 ммоль/л. Референтное содержание ВЕ составляет 2,5 ммоль/л. На практике главным показателем является именно ВЕ.

В состоянии ацидоза основания в дефиците и ВЕ снижаются. Таким образом, величина BE — наиболее информативный показатель метаболических нарушений кислотно-основного состояния со знаком + или –. Дефицит оснований – это ацидоз, избыток за пределы нормы колебаний – метаболический алкалоз.

Итак, виды нарушений кислотно-основного состояния могут проявляться в алкалозе, ацидозе – респираторном или метаболическом.

Метаболический (обменный) ацидоз возникает при накоплении недоокисленных продуктов распада, т. е. нелетучих кислот. Такое нарушение развивается с дефицитом поступления кислорода, нарушениях кровотока в сосудах, нарушениях углеводного обмена с накоплением кетоновых тел в крови при диабете, острой почечной и печеночной недостаточности, выраженной диарее, недостаточности сердечной деятельности, любом виде шока, отравлении древесным спиртом, антифризом, салицилатами и др.

Для его компенсации организм подключает дыхательный алкалоз, развивающийся с гипервентиляцией легких на фоне дыхания Куссмауля. Это патологическое дыхание ацидотическое, ассоциируется с гипервентиляцией легких.

Метаболический (обменный) алкалоз могут вызывать тяжелые электролитные нарушения. По сравнению с ацидозом, он встречается реже. Его причинами могут стать введение NaHCO3 при диффузиях растворов в избыточном количестве, употребление ощелачивающих продуктов (растительные, молочные), неукротимая рвота с потерей хлоридов, прием диуретиков, которые вызывают потерю калия и выведение тех же хлоридов, избыточная продукция альдостерона корой надпочечников в результате гиповолемии. Сюда же относится и сам гиперкортицизм, при переливании достаточно большого объема крови, хранившейся с цитратом натрия, т. е. с содержанием окислов азота. Респираторные нарушения КОС (кислотно-основного состояния) могут возникнуть при неадекватной вентиляции легких и колебаниях СО2 в крови.

Респираторный (дыхательный) алкалоз возникает при гипервентиляции – произвольной и непроизвольной. У здоровых людей такое состояние может возникнуть при большом подъеме в горы, при марафонском беге, эмоциональном возбуждении. У больных – при сердечных и легочных патологиях, когда имеется одышка. При выраженной гипокапнии (PaCO2 ниже 20 или 25 мм рт. ст.) и, как следствие, дыхательном алкалозе, могут при отсутствии мер развиться судороги и быть летальный исход. Особенно неблагоприятен дыхательный алкалоз при гипоксии, т. е. уменьшении снабжения кислородом – при летных происшествиях, к примеру. Гипервентиляция возникает при травмах головы, опухолях мозга, интоксикациях при сепсисе, передозировке салицилатов, печеночной недостаточности.

Респираторный ацидоз

Суть его в накоплении в крови СО2 в результате дыхательной недостаточности. Это гиперкапния и гиповентиляция легких. Она может развиться как следствие нахождения человека в условиях с повышенным содержанием СО2.

С гиповентиляцией связана всегда дыхательная недостаточность, возникающая в результате угнетения дыхательного центра. Причинами патологии являются: инфекции, отравление снотворными, черепно-мозговые травмы, миастения, хронические легочные патологии.

Компенсаторные механизмы, которые организм подключает, пытаясь скорректировать рН до нейтральных значений, никогда не будут действовать с избытком – это контролируется. И означает, например, что при респираторных нарушениях компенсация рН будет стремиться к норме, но никогда не превысит 7,4. Следует заметить, что полная компенсация бывает редко достижимой.

Подсказки

Сдвиги КОС, которые вызвали включение компенсаторных механизмов, всегда первичны, а компенсация – вторична. Надо учитывать, что первичные нарушения показателей при определении кислотно-основного состояния выражены всегда в большей степени, чем компенсаторные, и именно они определяют сдвиг рН в ту или иную сторону.

Корректная трактовка сдвигов первичных и компенсаторных вторичных необходима и обязательна потому, что она определяет дальнейшую адекватную коррекцию этих нарушений, т. е. терапию по оказанию первой помощи и лечения в дальнейшем.

Для исключения ошибок в диагностике кислотно-основного состояния крови, всегда нужно учитывать и PaO2 наряду с другими компонентами нарушения и сочетание с клиническими проявлениями патологии.

Для подсказки: любое первичное нарушение (метаболическое или респираторное), независимо от этиологии, параллельно отклонению pH. А компенсаторный эффект ему противоположен.

Кислотно-основное состояние плазмы крови в оценке ургентных состояний организма в реанимационной практике – крайне важная величина и показатель. Благодаря ему можно спрогнозировать состояние организма при экстремальной ситуации.

Источник

Кислотно-основное состояние крови является важнейшим показателем для оценки состояния организма в экстремальных ситуациях в реанимационной практике.

В настоящее время исследование кислотно-основного состояния крови проводится на газовых анализаторах, которые с учетом температуры крови и давления напрямую определяют концентрацию ионов Н+ (величину рН) и показатель pCO2 (количество СО2). Остальные параметры рассчитываются, исходя из уравнения Гендерсона-Гассельбаха:

Уравнение Гендерсона-гассельбаха

где рК’ — отрицательный десятичный логарифм константы диссоциации угольной кислоты (рК’=6,1)

Водородный показатель

Водородный показатель (рН) — отрицательный десятичный логарифм активности (или концентрации) водородных ионов в растворе. Он является основной количественной характеристикой кислотности водных растворов:

рН = -lg[H+]

В случае равенства концентраций ионов H+ и ОН- величина рН среды соответствует 7,0, то есть среда нейтральная.

В растворах кислот и щелочей концентрация ионов H+ не равна концентрации ионов ОН- и рН соответственно меньше или больше 7. Повышение концентрации ионов Н+ вызывает соответствующее уменьшение концентрации ионов ОН-, и наоборот.

В норме концентрация ионов Н+ колеблется от 36 до 45 нмоль/л, в среднем она составляет 40 нмоль/л, что соответствует рН 7,4. Совместимый с жизнью диапазон концентраций ионов Н+ 16–160 нмоль/л, что соответствует рН 6,8–7,8.

Снижение величины рН или накопление ионов Н+ называется ацидоз, увеличение рН или дефицит ионов Н+ — алкалоз.

Нормальные величины

Цельная кровьноворожденные7,21–7,38
взрослые
артериальная кровь7,37–7,45
венозная кровь7,34–7,43

Клинико-диагностическое значение

Водородный показатель является главным и его значение определяет диагноз ацидоза или алкалоза. Изменение показателя происходит при накоплении кислотных или щелочных эквивалентов.

Парциальное давление углекислого газа

Парциальное давление или напряжение углекислого газа (рСО2) — давление СО2 в газовой смеси, находящейся в равновесии с плазмой артериальной крови при температуре 38°С. Показатель является критерием концентрации углекислоты в крови.

Нормальные величины

Цельная кровьноворожденные27–40 мм рт.ст.
дети27–41 мм рт.ст.
мужчины35–48 мм рт.ст. (4,66–6,38 кПа)
женщины32–45 мм рт.ст. (4,26–6,00 кПа)

Клинико-диагностическое значение

Изменение показателя pCO2 играет ведущую роль при респираторных нарушениях:

  • увеличивается при респираторном ацидозе из-за нарушения вентиляции легких, что и вызывает накопление угольной кислоты;
  • снижается при респираторном алкалозе. В этом случае уменьшение рСО2 происходит в результате гипервентиляции легких, которая приводит к повышенному выведению из организма углекислоты и защелачиванию крови.

При нереспираторных (метаболических) проблемах показатель не изменяется. Если налицо такие сдвиги рН и показатель pCO2 не в норме, то имеются вторичные (или компенсаторные) изменения. При клинической оценке сдвига показателя рСО2 важно установить, являются ли изменения причинными или компенсаторными!

Таким образом, повышение показателя pCO2 происходит при респираторных ацидозах и компенсированном метаболическом алкалозе, а снижение — при респираторных алкалозах и компенсации метаболического ацидоза. Колебания величины рСО2 при патологических состояниях находятся в диапазоне от 10 до 130 мм рт.ст.

При респираторных нарушениях направление сдвига величины рН крови противоположно сдвигу рСО2, при метаболических нарушениях — сдвиги однонаправлены.

Концентрация бикарбонат-ионов

Концентрация бикарбонатов (ионов HCO3-) в плазме крови является третьим основным показателем кислотно-основного состояния.

На практике различают показатели актуальных (истинных) бикарбонатов и стандартных бикарбонатов.

Актуальные бикарбонаты (AB, АБ) – это концентрация ионов HCO3- в исследуемой крови при 38°С и реальных значениях pH и pCO2.

Стандартные бикарбонаты (SB, СБ) – это концентрация ионов HCO3- в исследуемой крови при приведении ее в стандартные условия: полное насыщение кислородом крови, уравновешивание при 38°С с газовой смесью, в которой pCO2 равно 40 мм рт.ст.

У здоровых людей концентрация актуальных и стандартных бикарбонатов практически одинакова.
Нормальные величины

Цельная кровьноворожденные17–24 ммоль/л
впоследствии19–24 ммоль/л
взрослые
артериальная кровь21–28 ммоль/л
венозная кровь22–29 ммоль/л

Клинико-диагностическое значение

Диагностическое значение концентрации бикарбонатов в крови состоит, прежде всего, в определении характера нарушений КОС (метаболического или респираторного).

Показатель в первую очередь изменяется при метаболических нарушениях:

  • при метаболическом ацидозе показатель HCO3- снижается, так как расходуется на нейтрализацию кислых веществ (буферная система),
  • при метаболическом алкалозе — повышается.

Так как угольная кислота очень плохо диссоциирует и ее накопление в крови практически не отражается на концентрации HCO3-, то при первичных респираторных нарушениях изменение бикарбонатов невелико.

При компенсации метаболического алкалоза бикарбонаты накапливаются вследствие урежения дыхания, при компенсации метаболического ацидоза — в результате усиления их почечной реабсорбции.

Концентрация буферных оснований

Еще одним показателем, характеризующим состояние КОС, является концентрация буферных оснований (buffer bases, ВВ), отражающая сумму всех анионов цельной крови, в основном анионов бикарбоната и хлора, к другим анионам относятся ионы белков, сульфаты, фосфаты, лактат, кетоновые тела и т.п.

Этот параметр почти не зависит от изменения парциального давления углекислого газа в крови, но отражает продукцию кислот тканями и частично функцию почек. По величине буферных оснований можно судить о сдвигах КОС, связанных с увеличением или уменьшением содержания нелетучих кислот в крови (то есть всех, кроме угольной кислоты).

Нормальные величины

Цельная кровьвзрослые44–48 ммоль/л

На практике используемым параметром концентрации буферных оснований является параметр «остаточные анионы» или «неопределяемые анионы» или «анионное несоответствие» или «анионная разница».

В основе использования показателя анионной разницы лежит постулат об электронейтральности, то есть количество отрицательных (анионов) и положительных (катионов) в плазме крови должно быть одинаковым. Если же экспериментально определить количество наиболее представленных в плазме крови ионов Na+, K+, Cl-, HCO3-, то разность между катионами и анионами составляет примерно 12 ммоль/л.

Анионная разница = ([Na+] + [K+]) — ([Cl-] + [HCO3-]) = 12 ммоль/л

Увеличение величины анионной разницы сигнализирует о накоплении неизмеряемых анионов (лактат, кетоновые тела) или катионов, что уточняется по клинической картине или по анамнезу.

Клинико-диагностическое значение

Показатели общих буферных оснований и анионной разницы особенно информативны при метаболических сдвигах КОС, тогда как при респираторных нарушениях его колебания незначительны.

Избыток буферных оснований

Избыток оснований (base excess, BE, ИО) — разница между фактической и должной величинами буферных оснований. По значению показатель может быть положительным (избыток оснований) или отрицательным (дефицит оснований, избыток кислот).

Показатель по диагностической ценности выше, чем показатели концентрации актуальных и стандартных бикарбонатов. Избыток оснований отражает сдвиги количества оснований буферных систем крови, а актуальные бикарбонаты — только концентрацию.

Нормальные величины

Цельная кровьноворожденныеот -10 до -2 ммоль/л
дети до 2 летот -7 до +1 ммоль/л
дети старше 2 летот -4 до -2 ммоль/л
взрослыеот -2 до +3 ммоль/л

Клинико-диагностическое значение

Наибольшие изменения показателя отмечаютcя при метаболических нарушениях: при ацидозе выявляется нехватка оснований крови (дефицит оснований, отрицательные значения), при алкалозе — избыток оснований (положительные значения). Предел дефицита, совместимый с жизнью, 30 ммоль/л.

При респираторных сдвигах показатель меняется незначительно.

Кислород-связанные показатели

К кислород-связанным показателям КОС относят оксигемоглобин, сатурацию гемоглобина кислородом, общее содержание и парциальное давление кислорода.

Оксигемоглобин

Оксигемоглобин (HbО2) – отражает процентное отношение количества оксигемоглобина (HbО2) к сумме всех гемоглобиновых фракций (общему гемоглобину).

Нормальные величины

Цельная кровьвзрослые94–97 %

Насыщение гемоглобина кислородом

Насыщение (сатурация) гемоглобина кислородом (HbOSAT, SО2), представляет собой отношение фракции оксигенированного гемоглобина к тому количеству гемоглобина в крови, который способен транспортировать О2.

Насыщение гемолобина

Отличия между двумя показателями HbО2 и HbOSAT заключаются в том, что у пациентов возможно наличие в крови фракции такой формы гемоглобина, которая не способна акцептировать О2 (Hb-CO, metHb, сульфоHb). Но так как большинство больных не имеют в крови повышенного содержания этих форм гемоглобина, значения HbО2 и SО2 обычно очень близки.
Например, насыщение гемоглобина кислородом составляет 95 %, величина оксигемоглобина составляет 53 %. Это означает, что несмотря на нормальное поступление кислорода, существует некоторая часть гемоглобина, не способная к его связыванию.
Показатель используется при цианозе и эритроцитозе, он помогает различить пониженную оксигенацию крови (например, при заболеваниях легких) и смешивание крови с венозной кровью при артерио-венозном шунте.

Цельная кровьноворожденные40–90 %
взрослые94–98 %

Общее содержание кислорода

Общее содержание кислорода (TO2) — сумма всего кислорода крови, то есть растворенного в плазме крови и цитозоле эритроцитов и кислорода, связанного с Hb.

Парциальное давление кислорода

Парциальное давление кислорода (pO2) — давление О2 в газе, находящемся в равновесии с кислородом, растворенным в плазме артериальной крови при температуре 38°С.

Хотя растворенный кислород составляет менее 10 % общего кислорода в крови, он находится в динамическом равновесии между кислородом эритроцитов и тканей.

Цельная кровьвзрослые83–108 мм рт.ст. 11,04–14,36 кПа

Данный показатель является основным при характеристике гипоксии.

Примечания

См. также

В категории «Кислотно-основное состояние»

  • Быстрая компенсация сдвигов рН — буферные системы
  • Величина рН формирует активность клеток

В категории «Клиническая биохимия»

  • Гормоны — биохимия

Источник