Анализ на карбоксигемоглобин в крови
Гемоглобин – это особый железо-содержащий белок крови сложной структуры, выполняющий в организме крайне важную функцию – газообмен и поддержание за счет этого стабильного обмена веществ.
Гемоглобин — своего рода посредник между тканями и легкими в обмене кислородом и углекислым газом. Для полноценного функционирования организма количество гемоглобина должно стабильным, с размахом колебаний (с учетом возраста и пола).
Увеличение количества гемоглобина, равно как и его уменьшение, приводит к расстройствам обмена веществ, к возникновению заболеваний и патологий.
В составе гемоглобина находится два составных элемента:
- белок глобин, являющийся основой для гемоглобина,
- железо в форме гемма, прикрепленное к определенным зонам белка.
Только в таком виде гемоглобин способен переносить в ткани кислород в виде оксигемоглобина, и уносить от них углекислоту в виде карбоксигемоглобина. Это окрашенные пигменты, оксигемоглобин имеет ярко-алый цвет, а карбоксигемоглобин – вишневый. Этим и обусловлена разница в окраске артериальной венозной крови, артериальная богата кислородом, венозная – углекислотой.
Обмен газов осуществляется в организме непрерывно, даже малейшее нарушение в системе дыхания или обмена газов немедленно приводит к сбоям в работе всего организма и развитию гипоксии (недостатка кислорода).
Гемоглобин находится внутри эритроцитов (красных кровяных телец), находящихся в крови в строго определенных количествах. При снижении количества эритроцитов закономерно снижается и количество гемоглобина в них.
За поддержание стабильного количества эритроцитов в организме человека отвечает костный мозг, где они образуются, а также селезенка и печень, где отжившие эритроциты разрушаются, а гемоглобин из них утилизируется.
Исследование гемоглобина проводят при общем анализе крови, параллельно изучая количество эритроцитов и их качественные характеристики.
Уровень гемоглобина сам по себе не дает возможности поставить диагноз, но является важной характеристикой нездоровья в организме, и оценивается врачом в сочетании с другими изменениями крови и клиническими симптомами.
Количество гемоглобина неразрывно связано с количеством эритроцитов, поэтому, нормы эритроцитов составляют:
- для мужчин 4.5-5.5*1012 /литр,
- для женщин – 3.7-4.6*1012/литр.
Количество гемоглобина составляет:
- у мужчин 125-145 г/л,
- у женщин 115-135 г/л.
Также существуют особые показатели, отражающие содержание гемоглобина в организме, необходимое для нормальной жизнедеятельности — цветовой показатель, то есть степень насыщенности эритроцитов гемоглобином, он составляет в норме 0.8-1.1 единиц. Также определяется и степень насыщения каждого эритроцита гемоглобином – в среднем это составляет 28-32 пикограмма.
Гемоглобин у детей
У взрослых в крови циркулирует только взрослая форма гемоглобина. У плода и новорожденных детей из-за особенностей кровообращения существует и особая форма гемоглобина – фетальная. После рождения ребенка она быстро разрушается и замещается на нормальный, взрослый гемоглобин. В норме фетального гемоглобина допускается в крови не более 0.5-1%.
Средняя продолжительность жизни эритроцита – около 120 суток, если жизнеспособность эритроцита уменьшается, это приводит к развитию различных аномалий в виде гемолитических анемий.
Нарушения в структуре гемоглобина
Гемоглобин в результате врожденных или приобретенных аномалий может приобретать неправильные формы или структуру, что отражается на способности эритроцита переносить кислород. Возникают такие нарушения как:
- аномальные гемоглобины (известно около 300 форм, одна из самых известных гемоглобин при талассемии),
- при отравлении угарным газом образуется карбогемоглобин, стойкое соединение, не способное переносить кислород,
- при отравлении многими ядами образуется метгемоглобин, также не способный переносить кислород.
- при избытке глюкозы крови при сахарном диабете формируется гликированный гемоглобин, также не способный полностью выполнять свои функции.
Могут быть и количественные нарушения:
- увеличение количества гемоглобина и эритроцитов при эритроцитозах и обезвоживании (сгущение крови),
- снижение гемоглобина при различных видах анемии.
В норме уровень гемоглобина повышен у спортсменов и альпинистов, летчиков и людей, длительно пребывающих на свежем воздухе. У жителей гор тоже физиологически повышен гемоглобин.
При патологии гемоглобин повышается:
- при эритроцитозе, патологическом увеличении количества эритроцитов при онкологии,
- при патологическом сгущении крови при обезвоживании и увеличении вязкости,
- при пороках сердца,
- при ожогах,
- при развитии легочно-сердечной недостаточности,
- при кишечной непроходимости.
Физиологическое снижение гемоглобина может возникать во время беременности за счет увеличения объема циркулирующей крови и разведения крови плазмой.
Обычно патологическое понижение количества гемоглобина называют анемией. Она может возникать:
- вследствие острой кровопотери при кровотечениях,
- в результате хронических микрокровотечений и потерь крови при геморрое, кишечных, маточных, десневых кровотечениях.
- при переливании плазмы, вливании большого количества жидкостей,
- при повышенном разрушении эритроцитов вследствие гемолиза,
- при дефиците железа, фолиевой кислоты, витамина В12,
- при хронической патологии организма,
- при поражении костного мозга с угнетением его функций.
О том, как правильно питаться для того, чтобы поднять гемоглобин — в нашей отдельной статье.
Любое патологическое изменение количества гемоглобина, как его повышение, так и понижение, требует консультации врача и всестороннего обследования.
Необходимо проведение адекватной терапии, особенно при анемиях. В среднем, при правильном лечении уровень гемоглобина при анемии повышается на 1-2 единицы в неделю.
Источник
Количественное определение карбоксигемоглобина в крови трупа остается весьма актуальным в судебно-медицинской практике. В последнее время общепринятыми являются спектрофотометрические методы исследования. Среди них предпочтение отдается методу, предложенному Фретвурстом и Майнеке (ЖСМЭ № 4, 1961 г.) и методике, разработанной Ленинградским областным бюро СМЭ и кафедрой судебной медицины 1 Ленинградского медицинского института им. И.П. Павлова (ЖСМЭ № 2, 1979 г.).
Нами выполнен сравнительный анализ указанных методов в целях выявления зависимости между концентрацией карбоксигемоглобина в крови трупов людей и погрешностями в определениях, если таковые имеют место.
Для построения соответствующих графиков в качестве контрольного материала использовалась кровь ребенка в возрасте до двух лет, которая принималась за кровь с 0 содержанием карбоксигемоглобина. Измерения проводились на спектрофотометре СФ-26.
I. Определение содержания карбоксигемоглобина по методу Фретвурста и Майнеке
Метод основан на поглощении света раствором гемолизированной крови до и после восстановления оксигемоглобина гидросульфитом натрия. Рассчитывалось остаточное светопоглощение при 0 и 100% содержании СО в крови. При построении калибровочного графика использовались кривые поглощения света восстановленной и невосстановленной гемолизированной крови, не содержащей СО, и этой же крови после насыщения ее до 100%.
Для этого бралась кровь, разведенная 0,1% р-ром аммиака в соотношении 0,5:100. После этого кровь помещалась в кювету с толщиной слоя 1 см и измерялся спектр поглощения при длинах волн от 550 до 590 нм. Далее к 10 мл той же крови добавляли 20—30 мл гидросульфита натрия и 0,1 мл 30% р-ра едкого натра. После тщательного перемешивания измерялась оптическая плотность в том же диапазоне волн и рассчитывалось остаточное светопоглощение. При 0 содержании СО в крови оно равно 25%, максимум раствора восстановленной крови наблюдался при 576 нм.
Для получения раствора карбоксигемоглобина, через приготовленный раствор крови пропускали чистую окись углерода, которую получали с помощью реакции между серной и муравьиной кислотами. Документировались спектры поглощения невосстановленной и восстановленной крови. При этом максимум смещался в коротковолновую область и наблюдался при 570 нм. Остаточное светопоглощение при 100% насыщении крови равно 92,5%. Смещение максимума в коротковолновую область может служить качественной характеристикой присутствия СО в крови.
Раствор крови перед спектрофотометрированием должен быть прозрачным. В противном случае он нуждается в центрифугировании в течение 15 минут при 3—4 тыс. об/мин.
Используя полученные данные остаточного светопоглощения при 0 и 100% насыщении крови СО, строился калибровочный график линейной зависимости содержания СО, к которому применима следующая формула:
CO% = (x-А)×100 / B-A, где
- х — остаточное светопоглощение исследуемого образца;
- А — остаточное светопоглощение при С0 = 0%;
- В — остаточное светопоглощение при СО = 100%.
II. Определение содержания карбоксигемоглобина по методу, предложенному Ленинградским областным бюро СМЭ и кафедрой судебной медицины I Ленинградского медицинского института им. И. П. Павлова
Насыщение крови окисью углерода производилось при определении коэффициентов, которые используются для расчета содержания карбоксигемоглобина в трупной крови. Для вывода коэффициентов брали трупную кровь, не содержащую СО, разводили ее 0,1% р-ром аммиака в соотношении 0,5:100. Раствор помещали в кювету с толщиной слоя 1 см и после добавления 5 мг гидросульфита натрия снимали спектр восстановленного гемоглобина в интервале от 500 до 600 нм. При этом максимум наблюдался при 555 нм.
Для получения спектра поглощения карбоксигемоглобина через приготовленный раствор крови в течение 10 мин. пропускали чистую окись углерода, которую получали с помощью реакции между серной и муравьиной кислотами. Затем в раствор добавляли 5 мг гидросульфита натрия и вновь пропускали окись углерода в течение 5 минут. После этого снимали спектр поглощения карбоксигемоглобина также в интервале от 500 до 600 нм, при этом отмечалось два максимума — при 540 и 570 нм. Кривые восстановленного гемоглобина и восстановленного карбоксигемоглобина пересекались в трех точках, соответствующих волнам 550, 558 и 580 нм., наибольшая же разница в светопоглощении восстановленного гемоглобина и карбоксигемоглобина наблюдалась при длине волны 534 нм. Поэтому для расчета коэффициентов мы пользовались волной 534 нм (Д1) и изобестической точкой 558 нм (Дг).
K1 = (Д1/Д2), К2 = А — К1, А= Д1/Д2 , где
- Д1 — оптическая плотность при 534 нм (без насыщения);
- Д1 — оптическая плотность при 534 нм (после насыщения);
- Д2 — оптическая плотность в изобетической точке. Расчет содержания карбоксигемоглобина производили по следующей формуле:
X = (Д1—Д2×К1)×100 / Д2×K2
Для прибора СФ-26 выведены следующие коэффициенты:
K1 = 0,79, К2=0,36.
Параллельно двумя методами было произведено количественное определение содержания карбоксигемоглобина в крови 20 трупов лиц, погибших от отравления окисью углерода. Среди них 15 мужчин в возрасте от 25 до 88 лет, 3 женщины— 18, 58 и 82 лет и 2 детей — 2 и 4 лет. Анализы производились на растворе крови одинаковой концентрации по методу Фретвурста и Майнеке в диапазоне от 560 до 580 нм с интервалом в 2 нм, по методике, предложенной Ленинградским областным бюро СМЭ и кафедрой судебной медицины в диапазоне от 500 до 600 нм.
Мы сочли целесообразным снимать полный спектр, так как при насыщении крови СО более, чем на 50%, появление на спектральной кривой двух пиков является и качественной характеристикой.
Проведенная статистическая обработка дала следующие результаты. По методу Фретвурста и Майнеке: средняя х — 79, среднее квадратичное отклонение δ — 12,8, ошибка (х)—2,96, коэффициент вариации CV —16,3.
По Ленинградской методике: средняя х — 77,2, среднее квадратичное отклонение — 11,8, ошибка (х)—2,7, коэффициент вариации С — 15,3. Критерием достоверности различий (t), наблюдаемых между средними служит отношение разности средних (X1—Х2) = Д к их статистической ошибке (mD). Следовательно: X1 = 79±2,96 Х2 = 77,2±2,7 Д=1,8. Ошибка разницы m2 = 2,962 + 2,72 = 4., отсюда tф = 0,45.
Для tф =0,45Р (значение вероятности) = 0,347, что не достигает даже первого порога доверительной вероятности (Р = 0,95). Таким образом, разницу между результатами, полученными двумя методами, следует считать статистически недостоверной. Следует также отметить, что по методике, предложенной исследователями Ленинграда, коэффициент вариации несколько ниже — 15,3 против 16,3 и ошибка — 2,7 против 2,96, что может свидетельствовать о том, что результаты, полученные этим методом, несколько точнее.
Руководствуясь этим соотношением концентрации СО в крови и погрешностью измерений, мы исследовали наш материал, ориентируясь на результаты, полученные именно этим методом. Для этого все показатели концентрации СО в трупной крови были разбиты на 8 групп. Каждая группа подвергалась стандартной статистической обработке. Полученные данные приводятся в таблице № 2. Следует заметить, что никакой закономерности нарастания или уменьшения процента ошибки по мере увеличения концентрации СО не выявлено. Минимальная ошибка наблюдается только при средних (от 40 до 60%) концентрациях СО и равна 0,83%.
Таким образом, проведенные исследования показали, что ошибка между двумя предлагаемыми методами статистически недостоверна и следовательно, выбор методики для работы не принципиален. Наиболее точные результаты могут быть получены при работе со средними концентрациями СО в крови. В остальных случаях на результатах исследований могут сказаться, очевидно, как технические погрешности при разведениях (в случаях с большой концентрацией), так и слишком малое содержание СО в исследуемой крови.
Таблица 1
Результаты статистического анализа сравнительного Определений количественного содержания карбоксигемоглобина в трупной крови
По методу Фретвурста и Майнеке | 85 | 76 | 88 | 89 | 80 | 43 | 85 | 86 | 72 | 88 | 72 | 85 | 74 | 79 | 55 | 97 | 91 | 85 | 71 | средняя 79 | 12,9 | 2,96 | 16,3 |
По Ленинградской методике | 77 | 80 | 89 | 88 | 80 | 46 | 80 | 82 | 70 | 87 | 72 | 78 | 72 | 73 | 53 | 93 | 91 | 78 | 78 | 77,2 | 11,8 | 2,7 | 15,3 |
Таблица 2
Изменение ошибки с изменением концентрации СО в трупной крови
Концентрация | 0-10% | 10—20% | 30—40% | 40—50% | 50—60% | 60-70% | 70—80% | 80—90% |
— | 5,5 | 15 | 36,8 | 44 | 56,1 | 65,7 | 74,3 | 81,7 |
X | 2,95 | 1,9 | 2,6 | 2,2 | 2,5 | 2,8 | 3,7 | 2,99 |
X | 1,3 | 0,85 | 1,5 | 0,83 | 0,83 | 0,83 | 1,5 | 1,05 |
похожие статьи
Морфофункциональная характеристика коры надпочечников при остром отравлении угарным газом в состоянии алкогольного опьянения / Алябьев Ф.В., Толмачева С.К., Долбня А.Д., Налтакян А.Г., Стрельцова Н.Ю., Сапега А.С., Паксюткина А.В., Возняк А.В. // Избранные вопросы судебно-медицинской экспертизы. — Хабаровск, 2019. — №18. — С. 39-40.
Сравнительная характеристика надпочечников при отравлении угарным газом и механической асфиксии при повешении / Алябьев Ф.В., Толмачева С.К., Сапега А.С., Сергеев А.П., Степанова В.С., Долбня А.Д., Возняк А.В. // Избранные вопросы судебно-медицинской экспертизы. — Хабаровск, 2019. — №18. — С. 25-26.
Паренхиматозно-стромальные соотношения зон коркового вещества надпочечников при остром отравлении окисью углерода / Алябьев Ф.В., Паксюткина А.В., Сапега А.С., Сергеев А.П., Степанова В.С., Толмачева С.К., Возняк А.В. // Избранные вопросы судебно-медицинской экспертизы. — Хабаровск, 2019. — №18. — С. 23-24.
Изучение распределения неостигмина метилсульфата в организме теплокровных животных после внутрижелудочного введения / Алехина М.И., Шорманов В.К., Никитина Т.Н., Маркелова А.М. // Судебно-медицинская экспертиза. — М., 2019. — №2. — С. 40-47.
Обнаружение 25B-NBOMe — производного фенилэтиламина в биологическом материале / Барсегян С.С., Кирюшин А.Н., Ерощенко Н.Н., Туаева Н.О., Носырев А.Е., Кирилюк А.А. // Судебно-медицинская экспертиза. — М., 2019. — №2. — С. 34-39.
Особенности распределения 2,4- и 2,6-ди-трет-бутилгидроксибензола в организме теплокровных животных / Шорманов В.К., Цацуа Е.П., Асташкина А.П. // Судебно-медицинская экспертиза. — М., 2019. — №1. — С. 36-42.
больше материалов в каталогах
Отравления продуктами горения
Судебно-химические исследования
Источник
Гемоглобин – металлопротеин, белок, содержащий гем. Гемоглобин составляет около 98% белков, содержащихся в цитоплазме эритроцита. Основная функция гемоглобина – перенос кислорода.
Структура гемоглобина определяет способность переноса кислорода эритроцитами. К 4–6 месяцам жизни ребенка происходит замена фетального гемоглобина на взрослую форму. В норме в крови взрослого человека фетальный гемоглобин составляет не более 1%. Фетальный гемоглобин обладает повышенным сродством к кислороду и сниженным ответом на регулятор передачи кислорода к тканям, 2,3 дифосфоглицерат. Поэтому увеличенное содержание фетального гемоглобина у взрослого человека приводит к недостаточному поступлению кислорода к тканям, т. е. гипоксии.
Изменение структуры гемоглобина (гемоглобинопатии) приводит к нарушению связывания с кислородом, необратимому связыванию гемоглобина с углекислым газом и, последовательно, изменению формы эритроцитов от двояковогнутого эластичного диска до искаженных жестких структур.
Кроме оценки форм и концентрации гемоглобина представляет интерес определение фракций гемоглобина, связанного не только с кислородом, но и другими газами.
Способность крови (эритроцитов) транспортировать кислород к тканям за счет формирования оксигемоглобина может существенно снижаться при вдыхании продуктов горения углерода, серы, ингаляцией оксидом азота которые вступают в необратимое соединение с гемоглобином, образуя дисгемоглобины, и препятствуя формированию оксигемоглобина. В нормальных условиях кислородпереносящая фракция гемоглобина, О2-Hb составляет 95–99%. В этой фракции гемоглобин находится в обратимой связи с кислородом, в окисленном состоянии Fe2+. Небольшой процент (до 1–2%) восстановленного гемоглобина +H+Hb всегда присутствует в крови. Его количество резко возрастает при гемолизе эритроцитов.
В патологических фракциях дисгемоглобинов (метгемоглобин, сульфгемоглобин, карбоксигемоглобин) железо гемоглобина переходит в более окисленную форму (Fe3+), не способную связывать и переносить кислород. В нормальных условиях фракция дисгемоглобинов составляет не более 1,5% общего гемоглобина. Причиной значительного повышения фракции карбоксигемоглобина (до 10%) является курение.
В развернутом клиническом анализе крови может встречаться показатель среднего содержания гемоглобина в эритроците (MCH и MCHC).
Метод исследования
Определение формы гемоглобина и выявление гемоглобинопатий возможно с помощью электрофореза.
Определение концентрации гемоглобина (общий гемоглобин, tHb) выполняется различными методами. Принцип определения гемоглобина заключается в лизисе эритроцитов пробы и последующей обработке реактивом, дающим окраску в комплексе с гемоглобином. Референтным методом определения гемоглобина является гемоглобинцианидный.
Интерпретация результатов исследования
При оценке уровня гемоглобина следует помнить:
- суточные колебания концентрации гемоглобина в периферической крови достигают 15% с максимальными значениями в утренние часы;
- длительное наложение жгута при взятии крови и плохо перемешанная проба крови приводят к получению неверных результатов.
Повышенные значения
- Сгущение крови, вызванное дегидратацией (неукротимая рвота, полиурия, диарея, малое потреблении жидкости в жаркое время);
- эритремия (полицитемия), симптоматические реактивные эритроцитозы;
- длительное пребывание на больших высотах;
- гипертриглицеридемия, лейкоцитоз (выше 25,0109/л), наличие в крови парапротеинов.
Пониженные значения
- Анемии различной этиологии;
- анемия хронических заболеваний;
- перенесенные кровопотери;
- злокачественные новообразования;
- нарушение синтетической функции печени.
Источник