Анализ на карбоксигемоглобин в крови

Гемоглобин – это особый железо-содержащий белок крови сложной структуры, выполняющий в организме крайне важную функцию – газообмен и поддержание за счет этого стабильного обмена веществ.

Гемоглобин — своего рода посредник между тканями и легкими в обмене кислородом и углекислым газом. Для полноценного функционирования организма количество гемоглобина должно стабильным, с размахом колебаний (с учетом возраста и пола).

Увеличение количества гемоглобина, равно как и его уменьшение, приводит к расстройствам обмена веществ, к возникновению заболеваний и патологий.

В составе гемоглобина находится два составных элемента:

  • белок глобин, являющийся основой для гемоглобина,
  • железо в форме гемма, прикрепленное к определенным зонам белка.

Только в таком виде гемоглобин способен переносить в ткани кислород в виде оксигемоглобина, и уносить от них углекислоту в виде карбоксигемоглобина. Это окрашенные пигменты, оксигемоглобин имеет ярко-алый цвет, а карбоксигемоглобин – вишневый. Этим и обусловлена разница в окраске артериальной  венозной крови, артериальная богата кислородом, венозная – углекислотой.

Обмен газов осуществляется в организме непрерывно, даже малейшее нарушение в системе дыхания или обмена газов немедленно приводит к сбоям в работе всего организма и развитию гипоксии (недостатка кислорода).

Гемоглобин находится внутри эритроцитов (красных кровяных телец), находящихся в крови в строго определенных количествах. При снижении количества эритроцитов закономерно снижается и количество гемоглобина в них. 

За поддержание стабильного количества эритроцитов в организме человека отвечает костный мозг, где они образуются, а также селезенка и печень, где отжившие эритроциты разрушаются, а гемоглобин из них утилизируется.

Исследование гемоглобина проводят при общем анализе крови, параллельно изучая количество эритроцитов и их качественные характеристики.

Уровень гемоглобина сам по себе не дает возможности поставить диагноз, но является важной характеристикой нездоровья в организме, и оценивается врачом в сочетании с другими изменениями крови и клиническими симптомами.

Количество гемоглобина неразрывно связано с количеством эритроцитов, поэтому, нормы эритроцитов составляют:

  • для мужчин 4.5-5.5*1012 /литр,
  • для женщин – 3.7-4.6*1012/литр.

Количество гемоглобина составляет:

  • у мужчин 125-145 г/л,
  • у женщин 115-135 г/л.

Также существуют особые показатели, отражающие содержание гемоглобина в организме, необходимое для нормальной жизнедеятельности — цветовой показатель, то есть степень насыщенности эритроцитов гемоглобином, он составляет в норме 0.8-1.1 единиц. Также определяется и степень насыщения каждого эритроцита гемоглобином – в среднем это составляет 28-32 пикограмма.

Гемоглобин у детей

У взрослых в крови циркулирует только взрослая форма гемоглобина. У плода и новорожденных детей из-за особенностей кровообращения существует и особая форма гемоглобина – фетальная. После рождения ребенка она быстро разрушается и замещается на нормальный, взрослый гемоглобин. В норме фетального гемоглобина допускается в крови не более 0.5-1%.

Средняя продолжительность жизни эритроцита – около 120 суток, если жизнеспособность эритроцита уменьшается, это приводит к развитию различных аномалий в виде гемолитических анемий.

Нарушения в структуре гемоглобина

Гемоглобин в результате врожденных или приобретенных аномалий может приобретать неправильные формы или структуру, что отражается на способности эритроцита переносить кислород. Возникают такие нарушения как:

  • аномальные гемоглобины (известно около 300 форм, одна из самых известных гемоглобин при талассемии),
  • при отравлении угарным газом образуется карбогемоглобин, стойкое соединение, не способное переносить кислород,
  • при отравлении многими ядами образуется метгемоглобин, также не способный переносить кислород.
  • при избытке глюкозы крови при сахарном диабете формируется гликированный гемоглобин, также не способный полностью выполнять свои функции.

Могут быть и количественные нарушения:

  • увеличение количества гемоглобина и эритроцитов при эритроцитозах и обезвоживании (сгущение крови),
  • снижение гемоглобина при различных видах анемии.

В норме уровень гемоглобина повышен у спортсменов и альпинистов, летчиков и людей, длительно пребывающих на свежем воздухе. У жителей гор тоже физиологически повышен гемоглобин.

При патологии гемоглобин повышается:

  • при эритроцитозе, патологическом увеличении количества эритроцитов при онкологии,
  • при патологическом сгущении крови при обезвоживании и увеличении вязкости,
  • при пороках сердца,
  • при ожогах,
  • при развитии легочно-сердечной недостаточности,
  • при кишечной непроходимости.

Физиологическое снижение гемоглобина может возникать во время беременности за счет увеличения объема циркулирующей крови и разведения крови плазмой.

Обычно патологическое понижение количества гемоглобина называют анемией. Она может возникать:

  • вследствие острой кровопотери при кровотечениях,
  • в результате хронических микрокровотечений и потерь крови при геморрое, кишечных, маточных, десневых кровотечениях.
  • при переливании плазмы, вливании большого количества жидкостей,
  • при повышенном разрушении эритроцитов вследствие гемолиза,
  • при дефиците железа, фолиевой кислоты, витамина В12,
  • при хронической патологии организма,
  • при поражении костного мозга с угнетением его функций.

О том, как правильно питаться для того, чтобы поднять гемоглобин — в нашей отдельной статье.

Любое патологическое изменение количества гемоглобина, как его повышение, так и понижение, требует консультации врача и всестороннего обследования.

Необходимо проведение адекватной терапии, особенно при анемиях. В среднем, при правильном лечении уровень гемоглобина при анемии повышается на 1-2 единицы в неделю.

Источник

Количественное определение карбоксигемоглобина в крови трупа остается весьма актуальным в судебно-медицинской практике. В последнее время общепринятыми являются спектрофотометрические методы исследования. Среди них предпочтение отдается методу, предложенному Фретвурстом и Майнеке (ЖСМЭ № 4, 1961 г.) и методике, разработанной Ленинградским областным бюро СМЭ и кафедрой судебной медицины 1 Ленинградского медицинского института им. И.П. Павлова (ЖСМЭ № 2, 1979 г.).

Нами выполнен сравнительный анализ указанных методов в целях выявления зависимости между концентрацией карбоксигемоглобина в крови трупов людей и погрешностями в определениях, если таковые имеют место.

Для построения соответствующих графиков в качестве контрольного материала использовалась кровь ребенка в возрасте до двух лет, которая принималась за кровь с 0 содержанием карбоксигемоглобина. Измерения проводились на спектрофотометре СФ-26.

I. Определение содержания карбоксигемоглобина по методу Фретвурста и Майнеке

Метод основан на поглощении света раствором гемолизированной крови до и после восстановления оксигемоглобина гидросульфитом натрия. Рассчитывалось остаточное светопоглощение при 0 и 100% содержании СО в крови. При построении калибровочного графика использовались кривые поглощения света восстановленной и невосстановленной гемолизированной крови, не содержащей СО, и этой же крови после насыщения ее до 100%.

Для этого бралась кровь, разведенная 0,1% р-ром аммиака в соотношении 0,5:100. После этого кровь помещалась в кювету с толщиной слоя 1 см и измерялся спектр поглощения при длинах волн от 550 до 590 нм. Далее к 10 мл той же крови добавляли 20—30 мл гидросульфита натрия и 0,1 мл 30% р-ра едкого натра. После тщательного перемешивания измерялась оптическая плотность в том же диапазоне волн и рассчитывалось остаточное светопоглощение. При 0 содержании СО в крови оно равно 25%, максимум раствора восстановленной крови наблюдался при 576 нм.

Для получения раствора карбоксигемоглобина, через приготовленный раствор крови пропускали чистую окись углерода, которую получали с помощью реакции между серной и муравьиной кислотами. Документировались спектры поглощения невосстановленной и восстановленной крови. При этом максимум смещался в коротковолновую область и наблюдался при 570 нм. Остаточное светопоглощение при 100% насыщении крови равно 92,5%. Смещение максимума в коротковолновую область может служить качественной характеристикой присутствия СО в крови.

Раствор крови перед спектрофотометрированием должен быть прозрачным. В противном случае он нуждается в центрифугировании в течение 15 минут при 3—4 тыс. об/мин.

Используя полученные данные остаточного светопоглощения при 0 и 100% насыщении крови СО, строился калибровочный график линейной зависимости содержания СО, к которому применима следующая формула:

CO% = (x-А)×100 / B-A, где

  • х — остаточное светопоглощение исследуемого образца;
  • А — остаточное светопоглощение при С0 = 0%;
  • В — остаточное светопоглощение при СО = 100%.

II. Определение содержания карбоксигемоглобина по методу, предложенному Ленинградским областным бюро СМЭ и кафедрой судебной медицины I Ленинградского медицинского института им. И. П. Павлова

Насыщение крови окисью углерода производилось при определении коэффициентов, которые используются для расчета содержания карбоксигемоглобина в трупной крови. Для вывода коэффициентов брали трупную кровь, не содержащую СО, разводили ее 0,1% р-ром аммиака в соотношении 0,5:100. Раствор помещали в кювету с толщиной слоя 1 см и после добавления 5 мг гидросульфита натрия снимали спектр восстановленного гемоглобина в интервале от 500 до 600 нм. При этом максимум наблюдался при 555 нм.

Для получения спектра поглощения карбоксигемоглобина через приготовленный раствор крови в течение 10 мин. пропускали чистую окись углерода, которую получали с помощью реакции между серной и муравьиной кислотами. Затем в раствор добавляли 5 мг гидросульфита натрия и вновь пропускали окись углерода в течение 5 минут. После этого снимали спектр поглощения карбоксигемоглобина также в интервале от 500 до 600 нм, при этом отмечалось два максимума — при 540 и 570 нм. Кривые восстановленного гемоглобина и восстановленного карбоксигемоглобина пересекались в трех точках, соответствующих волнам 550, 558 и 580 нм., наибольшая же разница в светопоглощении восстановленного гемоглобина и карбоксигемоглобина наблюдалась при длине волны 534 нм. Поэтому для расчета коэффициентов мы пользовались волной 534 нм (Д1) и изобестической точкой 558 нм (Дг).

K1 = (Д1/Д2), К2 = А — К1, А= Д1/Д2 , где

  • Д1 — оптическая плотность при 534 нм (без насыщения);
  • Д1 — оптическая плотность при 534 нм (после насыщения);
  • Д2 — оптическая плотность в изобетической точке. Расчет содержания карбоксигемоглобина производили по следующей формуле:

X = (Д1—Д2×К1)×100 / Д2×K2

Для прибора СФ-26 выведены следующие коэффициенты:

K1 = 0,79, К2=0,36.

Параллельно двумя методами было произведено количественное определение содержания карбоксигемоглобина в крови 20 трупов лиц, погибших от отравления окисью углерода. Среди них 15 мужчин в возрасте от 25 до 88 лет, 3 женщины— 18, 58 и 82 лет и 2 детей — 2 и 4 лет. Анализы производились на растворе крови одинаковой концентрации по методу Фретвурста и Майнеке в диапазоне от 560 до 580 нм с интервалом в 2 нм, по методике, предложенной Ленинградским областным бюро СМЭ и кафедрой судебной медицины в диапазоне от 500 до 600 нм.

Мы сочли целесообразным снимать полный спектр, так как при насыщении крови СО более, чем на 50%, появление на спектральной кривой двух пиков является и качественной характеристикой.

Проведенная статистическая обработка дала следующие результаты. По методу Фретвурста и Майнеке: средняя х — 79, среднее квадратичное отклонение δ — 12,8, ошибка (х)—2,96, коэффициент вариации CV —16,3.

По Ленинградской методике: средняя х — 77,2, среднее квадратичное отклонение — 11,8, ошибка (х)—2,7, коэффициент вариации С — 15,3. Критерием достоверности различий (t), наблюдаемых между средними служит отношение разности средних (X1—Х2) = Д к их статистической ошибке (mD). Следовательно: X1 = 79±2,96 Х2 = 77,2±2,7 Д=1,8. Ошибка разницы m2 = 2,962 + 2,72 = 4., отсюда tф = 0,45.

Для tф =0,45Р (значение вероятности) = 0,347, что не достигает даже первого порога доверительной вероятности (Р = 0,95). Таким образом, разницу между результатами, полученными двумя методами, следует считать статистически недостоверной. Следует также отметить, что по методике, предложенной исследователями Ленинграда, коэффициент вариации несколько ниже — 15,3 против 16,3 и ошибка — 2,7 против 2,96, что может свидетельствовать о том, что результаты, полученные этим методом, несколько точнее.

Руководствуясь этим соотношением концентрации СО в крови и погрешностью измерений, мы исследовали наш материал, ориентируясь на результаты, полученные именно этим методом. Для этого все показатели концентрации СО в трупной крови были разбиты на 8 групп. Каждая группа подвергалась стандартной статистической обработке. Полученные данные приводятся в таблице № 2. Следует заметить, что никакой закономерности нарастания или уменьшения процента ошибки по мере увеличения концентрации СО не выявлено. Минимальная ошибка наблюдается только при средних (от 40 до 60%) концентрациях СО и равна 0,83%.

Таким образом, проведенные исследования показали, что ошибка между двумя предлагаемыми методами статистически недостоверна и следовательно, выбор методики для работы не принципиален. Наиболее точные результаты могут быть получены при работе со средними концентрациями СО в крови. В остальных случаях на результатах исследований могут сказаться, очевидно, как технические погрешности при разведениях (в случаях с большой концентрацией), так и слишком малое содержание СО в исследуемой крови.

Таблица 1

Результаты статистического анализа сравнительного Определений количественного содержания карбоксигемоглобина в трупной крови

По методу Фретвурста и Майнеке

85

76

88

89

80

43

85

86

72

88

72

85

74

79

55

97

91

85

71

средняя 79

12,9

2,96

16,3

По Ленинградской методике

77

80

89

88

80

46

80

82

70

87

72

78

72

73

53

93

91

78

78

77,2

11,8

2,7

15,3

Таблица 2

Изменение ошибки с изменением концентрации СО в трупной крови

Концентрация

0-10%

10—20%

30—40%

40—50%

50—60%

60-70%

70—80%

80—90%

5,5

15

36,8

44

56,1

65,7

74,3

81,7

X

2,95

1,9

2,6

2,2

2,5

2,8

3,7

2,99

X

1,3

0,85

1,5

0,83

0,83

0,83

1,5

1,05

похожие статьи

Морфофункциональная характеристика коры надпочечников при остром отравлении угарным газом в состоянии алкогольного опьянения / Алябьев Ф.В., Толмачева С.К., Долбня А.Д., Налтакян А.Г., Стрельцова Н.Ю., Сапега А.С., Паксюткина А.В., Возняк А.В. // Избранные вопросы судебно-медицинской экспертизы. — Хабаровск, 2019. — №18. — С. 39-40.

Сравнительная характеристика надпочечников при отравлении угарным газом и механической асфиксии при повешении / Алябьев Ф.В., Толмачева С.К., Сапега А.С., Сергеев А.П., Степанова В.С., Долбня А.Д., Возняк А.В. // Избранные вопросы судебно-медицинской экспертизы. — Хабаровск, 2019. — №18. — С. 25-26.

Паренхиматозно-стромальные соотношения зон коркового вещества надпочечников при остром отравлении окисью углерода / Алябьев Ф.В., Паксюткина А.В., Сапега А.С., Сергеев А.П., Степанова В.С., Толмачева С.К., Возняк А.В. // Избранные вопросы судебно-медицинской экспертизы. — Хабаровск, 2019. — №18. — С. 23-24.

Изучение распределения неостигмина метилсульфата в организме теплокровных животных после внутрижелудочного введения / Алехина М.И., Шорманов В.К., Никитина Т.Н., Маркелова А.М. // Судебно-медицинская экспертиза. — М., 2019. — №2. — С. 40-47.

Обнаружение 25B-NBOMe — производного фенилэтиламина в биологическом материале / Барсегян С.С., Кирюшин А.Н., Ерощенко Н.Н., Туаева Н.О., Носырев А.Е., Кирилюк А.А. // Судебно-медицинская экспертиза. — М., 2019. — №2. — С. 34-39.

Особенности распределения 2,4- и 2,6-ди-трет-бутилгидроксибензола в организме теплокровных животных / Шорманов В.К., Цацуа Е.П., Асташкина А.П. // Судебно-медицинская экспертиза. — М., 2019. — №1. — С. 36-42.

больше материалов в каталогах

Отравления продуктами горения

Судебно-химические исследования

Источник

Гемоглобин – металлопротеин, белок, содержащий гем. Гемоглобин составляет около 98% белков, содержащихся в цитоплазме эритроцита. Основная функция гемоглобина – перенос кислорода.

Структура гемоглобина определяет способность переноса кислорода эритроцитами. К 4–6 месяцам жизни ребенка происходит замена фетального гемоглобина на взрослую форму. В норме в крови взрослого человека фетальный гемоглобин составляет не более 1%. Фетальный гемоглобин обладает повышенным сродством к кислороду и сниженным ответом на регулятор передачи кислорода к тканям, 2,3 дифосфоглицерат. Поэтому увеличенное содержание фетального гемоглобина у взрослого человека приводит к недостаточному поступлению кислорода к тканям, т. е. гипоксии.

Изменение структуры гемоглобина (гемоглобинопатии) приводит к нарушению связывания с кислородом, необратимому связыванию гемоглобина с углекислым газом и, последовательно, изменению формы эритроцитов от двояковогнутого эластичного диска до искаженных жестких структур.

Кроме оценки форм и концентрации гемоглобина представляет интерес определение фракций гемоглобина, связанного не только с кислородом, но и другими газами.

Способность крови (эритроцитов) транспортировать кислород к тканям за счет формирования оксигемоглобина может существенно снижаться при вдыхании продуктов горения углерода, серы, ингаляцией оксидом азота которые вступают в необратимое соединение с гемоглобином, образуя дисгемоглобины, и препятствуя формированию оксигемоглобина. В нормальных условиях кислородпереносящая фракция гемоглобина, О2-Hb составляет 95–99%. В этой фракции гемоглобин находится в обратимой связи с кислородом, в окисленном состоянии Fe2+. Небольшой процент (до 1–2%) восстановленного гемоглобина +H+Hb всегда присутствует в крови. Его количество резко возрастает при гемолизе эритроцитов.

В патологических фракциях дисгемоглобинов (метгемоглобин, сульфгемоглобин, карбоксигемоглобин) железо гемоглобина переходит в более окисленную форму (Fe3+), не способную связывать и переносить кислород. В нормальных условиях фракция дисгемоглобинов составляет не более 1,5% общего гемоглобина. Причиной значительного повышения фракции карбоксигемоглобина (до 10%) является курение.

В развернутом клиническом анализе крови может встречаться показатель среднего содержания гемоглобина в эритроците (MCH и MCHC).

Метод исследования

Определение формы гемоглобина и выявление гемоглобинопатий возможно с помощью электрофореза.

Определение концентрации гемоглобина (общий гемоглобин, tHb) выполняется различными методами. Принцип определения гемоглобина заключается в лизисе эритроцитов пробы и последующей обработке реактивом, дающим окраску в комплексе с гемоглобином. Референтным методом определения гемоглобина является гемоглобинцианидный.

Интерпретация результатов исследования

При оценке уровня гемоглобина следует помнить:

  • суточные колебания концентрации гемоглобина в периферической крови достигают 15% с максимальными значениями в утренние часы;
  • длительное наложение жгута при взятии крови и плохо перемешанная проба крови приводят к получению неверных результатов.

Повышенные значения

  • Сгущение крови, вызванное дегидратацией (неукротимая рвота, полиурия, диарея, малое потреблении жидкости в жаркое время);
  • эритремия (полицитемия), симптоматические реактивные эритроцитозы;
  • длительное пребывание на больших высотах;
  • гипертриглицеридемия, лейкоцитоз (выше 25,0109/л), наличие в крови парапротеинов.

Пониженные значения

  • Анемии различной этиологии;
  • анемия хронических заболеваний;
  • перенесенные кровопотери;
  • злокачественные новообразования;
  • нарушение синтетической функции печени.

Источник