Анализ крови при мышечной работе
Изменения химического состава крови является отражением тех биохимических сдвигов, которые возникают при мышечной деятельности в различных внутренних органах, скелетных мышцах и миокарде. Поэтому на основании анализа химического состава крови можно оценить биохимические процессы, протекающие во время работы. Это имеет большое практическое значение, так как из всех тканей организма кровь наиболее доступна для исследования.
Биохимические сдвиги, наблюдаемые в крови, в значительной мере зависят от характера работы, и поэтому их анализ следует проводить с учетом мощности и продолжительности выполненных нагрузок.
При выполнении мышечной работы в крови чаще всего обнаруживаются следующие изменения:
- 1. Повышение концентрации белков в плазме крови. Это происходит по двум причинам. Во-первых, усиленное потоотделение приводит к уменьшению содержания воды в плазме крови и, следовательно, к ее сгущению, в результате чего возрастают концентрации всех компонентов плазмы, в том числе белков. Во-вторых, вследствие повреждения клеточных мембран наблюдается выход внутриклеточных белков в плазму крови. Однако при очень продолжительной работе возможно снижение концентрации белков плазмы. В этом случае часть белков из кровяного русла переходит в мочу, а другая часть используется в качестве источников энергии.
- 2. Изменение концентрации глюкозы в крови во время работы характеризуется фазностью. В начале работы обычно уровень глюкозы в крови возрастает. Это объясняется тем, что в начале работы в печени имеются большие запасы гликогена и глюкогенез протекает с высокой скоростью. С другой стороны, в начале работы мышцы тоже обладают значительными запасами гликогена, которые они используют для своего энергообеспечения, и поэтому не извлекают глюкозу из кровяного русла. По мере выполнения работы снижается содержание гликогена как в печени, так и в мышцах. В связи с этим печень направляет все меньше и меньше глюкозы в кровь, а мышцы, наоборот, начинают в большей мере использовать глюкозу крови для получения энергии. При длительной работе часто наблюдается снижение концентрации глюкозы в крови, что обусловлено истощением запасов гликогена и в печени, и в мышцах.
- 3. Повышение концентрации лактата в крови наблюдается практически при любой спортивной деятельности, однако степень возрастания концентрации лактата в значительной мере зависит от характера выполненной работы и тренированности спортсмена. Наибольший подъем уровня лактата в крови отмечается при выполнении физических нагрузок в зоне субмаксимальной мощности, так как в этом случае главным источником энергии для работающих мышц является анаэробный гликолиз, приводящий к образованию и накоплению молочной кислоты.
В покое, до работы содержание лактата в крови равняется 1-2 ммоль/л. После работы «до отказа» в зоне субмаксимальной мощности у спортсменов средней квалификации концентрация лактата в крови увеличивается до 8-10 ммоль/л, у высокотренированных этот рост может достигать 18-20 ммоль/л и выше. В литературе описаны случаи повышения лактата в крови у очень хорошо подготовленных спортсменов до 30-32 ммоль/л.
При проведении анализа крови на содержание лактата необходимо учитывать, что увеличение его концентрации в крови происходит не сразу, а через несколько минут после окончания работы. Поэтому забор крови следует делать примерно через 5 мин после завершения нагрузки. При взятии крови в более поздние сроки концентрация лактата окажется заниженной, так как часть его будет извлечена из кровяного русла клетками миокарда и печени.
- 4. Водородный показатель. Образующийся при интенсивной работе лактат является сильной кислотой и его поступление в кровяное русло должно вести к повышению кислотности крови. Однако первые порции лактата, диффундирующие из мышц в кровяное русло, нейтрализуются буферными системами крови. В дальнейшем, по мере исчерпания емкости буферных систем, наблюдается повышение кислотности Крови, возникает так называемый некомпенсированный ацидоз. В покое значение рН венозной крови равно 7,35-7,36. При мышечной работе вследствие накопления в крови лактата, величина рН уменьшается. При выполнении физических упражнений субмаксимальной мощности РН снижается у спортсменов средней квалификации до 7,1-7,2, а у спортсменов мирового класса в моче. В связи с этим по выделению лактата с мочой можно судить об общем вкладе гликолитического пути ресинтеза АТФ в энергообеспечение всей работы, выполненной спортсменом за снижение водородного показателя может быть до 6,8.
- 5. Повышение концентрации свободных жирных кислот и кетоновых тел наблюдается при длительной мышечной работе вследствие мобилизации жира из жировых депо и последующим кетогенезом в печени. Увеличение концентрации кетоновых тел также вызывает повышение кислотности и снижение рН крови.
- 6. Мочевина. При кратковременной работе концентрация мочевины в крови увеличивается незначительно, а при длительной физической работе уровень мочевины в крови может возрасти в 4-5 раз. Причиной увеличения содержания мочевины в крови является усиление катаболизма белков под воздействием физических нагрузок, особенно силового характера. Распад белков, в свою очередь, ведет к накоплению свободных аминокислот, при распаде которых образуется в большом количестве аммиак. В печени большая часть образовавшегося аммиака превращается в мочевину.
Источник
24.08.2011г.
Химический анализ мышечной ткани имеет большое значение для расшифровки патогенеза нервно-мышечных заболеваний, однако сравнительно редко используется для целей диагностики. Причины этого заключаются в отсутствии на сегодняшний день реальных представлений о молекулярной сущности заболевания в каждом конкретном случае.
Исключение составляют лишь немногие миопатии, для которых первичный эффект мутантного гена известен (например, карнитиновая). В большинстве случаев широкий набор биохимических тестов может быть использован не столько для выявления конкретной формы заболевания, сколько для разрешения таких кардинальных вопросов, как разделение первичных и вторичных амиотрофий.
Так, снижение активности фосфорилазы (за счет выпадения А-формы) характерно для большей части нервно-мышечных заболеваний. Однако у больных миодистрофией Дюшенна уже на ранних стадиях заболевания активность фермента составляет 20 — 50% нормы, в то время как в случае плечелопаточно-лицевого варианта ПМД и спинальных амиотрофий редко снижается ниже 50% [Salvatore D. et al., 1967, 1971]. В далеко зашедших стадиях заболеваний отличия нивелируются.
Определение активности КФК в мышечной ткани также имеет диагностическое значение, являясь негативным отражением изменения активности фермента в сыворотке крови. Правда, при этом зависимость активности ферментов от возраста и пола частично нивелируется. Согласно данным Silverman L. и соавт. (1976) в начальных стадиях заболевания определенное значение для выявления ПМД имеет идентификация мозгового типа фермента (ВВ). Если у больных с псевдогипертрофической формой Дюшенна активность этой формы была зарегистрирована в 92% случаев, то при невральных амиотрофиях не более чем в 20%.
Важный вклад в разработку принципиально новых тестов исследования мышечной ткани, предназначенных для разграничения отдельных форм миодистрофий, внесли работы V. Jonasescu и соавт. (1971, 1973, 1975). В основу метода положено определение белково-синтетической способности полирибосомного комплекса.
Оценка полученных результатов проводилась на основании анализа трех параметров: скорости синтеза саркоплазматических белков, коллагена, оценки профиля полисом. Характерным признаком миодистрофии Дюшенна явилось резкое увеличение интенсивности включения аминокислот во фракцию коллагена на фоне сохранного профиля полисом. При форме Беккера было отмечено снижение количества рибосом.
Характерной особенностью аутосомно наследуемых миодистрофий явилось избирательное увеличение скорости синтеза саркоплазматических белков. Несмотря на то что выявленные особенности позволяют разграничить отдельные формы ПМД, предложенный метод широкого распространения не получил. Это обусловлено в основном техническими трудностями, плохой воспроизводимостью способа, необходимостью использования большого количества биопсийного материала (около 1 г).
В 1973 г. Е. С. Бондаренко предложил дифференцировать нервно-мышечные заболевания по степени изменения содержания ДНК и соотношения нуклеотидов. У больных миодистрофией Дюшенна был зарегистрирован низкий уровень полинуклеотида, при форме Эрба он оставался без существенных изменений, а в случае спинальной амиотрофии Кугельберга — Веландер превышал норму в 2 — 3 раза.
В 1978 г. А. П. Хохлов и В. К. Малаховский разработали простой тест для выявления отдельных форм нервно-мышечных заболеваний, требующий минимального количества материала (в пределах 10 мг). Сущность заключается в определении константы диссоциации комплекса цАМФ — протеинкиназа.
Величина этого параметра, в норме составляющая 5,5 ± 0,5 * 10—8 М, изменяется при нервно-мышечных заболеваниях следующим образом: при миодистрофии Дюшенна 5,2 ± 0,56 М, при юношеской форме Эрба 0,54 ± 0,08 М, при плечелопаточно-лицевой форме Ландузи — Дежерина 0,45 ± 0,16 М, при спинальной амиотрофии Кугельберга — Веландер 1,05 ± 0,2 М, при невральной амиотрофии Шарко — Мари 2,2 ± 0,3 М и т. д.; это позволяет достоверно дифференцировать Х-сцепленные, аутосомные и неврогенные миопатии. Важным преимуществом данного теста является отсутствие зависимости величины Кдис от пола, возраста, стадии, темпа развития заболевания.
Изложенный литературный материал указывает на перспективность использования биохимического анализа мышечной ткани для диагностических целей. Химические методы исследования имеют преимущество перед морфологическими, так как уровень биохимических сдвигов в подавляющем большинстве случаев не зависит от степени повреждения мышечной ткани и остается неизменным как в преклинической, так и в терминальной стадии заболевания.
Открытие первичного продукта мутантного гена сделает возможным проведение специфической диагностики нервно-мышечных заболеваний задолго до формирования клинической картины заболевания.
«Нервно-мышечные болезни»,
Б.М.Гехт, Н.А.Ильина
Читайте далее:
- Лечение прогрессирующих мышечных дистрофий (аллопуринол)
- Лечение прогрессирующих мышечных дистрофий (анаприлин)
- Лечение прогрессирующих мышечных дистрофий (карбонат лития)
- Гипотеза «деффектных мембран»
- Дефекты системы цАМФ — новая гипотеза возникновения и развития миодистрофического процесса
- Диагностика миодистрофий с использованием биохимических методов исследования
- Исследование мочи
- Методы контроля лекарственной терапии
- Лечение прогрессирующих мышечных дистрофий
- Редкие формы прогрессирующих мышечных дистрофий
- Гипотезы патогенеза прогрессирующих мышечных дистрофий
- Гипотеза мышечной гипоксии
- Окулярная и окулофарингеальная форма миодистрофии (частный случай)
- Конечностно-поясная миодистрофия Эрба
- Лицелопаточно-плечевая форма миодистрофии Ландузи — Дежерина
- Дистальная форма миодистрофий
- Лопаточно-перонеальная амиотрофия Давиденкова
- Окулярная (офтальмоплегическая) и окулофарингеальная форма миодистрофии
Источник
Несколько слов об этой статье:
Во-первых, как и говорил в паблике — данная статья переведена с другого языка (пускай и, в принципе, близкого русскому, но все равно перевод — это достаточно сложная работа). Забавно то, что после того, как все перевел — нашел в интернете небольшую часть этой, уже переведенной на русский язык, статьи. Жаль потраченного времени. Ну да ладно..Во-вторых, это статья о биохимии! Отсюда надо сделать вывод, что она будет тяжелой для восприятия, и как тут ни старайся ее упростить — все равно объяснить все на пальцах невозможно, поэтому подавляющее большинство описанных механизмов объяснять простым языком не стал, чтобы не запутывать читающих еще больше. Если внимательно и вдумчиво читать, то во всем можно будет разобраться. Ну и в-третьих, в статье присутствует достаточное количество терминов (некоторые вкратце объясняются в скобках, некоторые — нет. т.к. двумя-тремя словами их не объяснить, а если их начинать расписывать, то статья может стать слишком большой и абсолютно непонятной). Поэтому, я бы советовал использовать интернет-поисковики для тех слов, значения которых вам неизвестно.
Возможен вопрос типа: «Зачем выкладывать такие сложные статьи, если в них трудно разобраться?» Такие статьи нужны для того, чтобы понимать какие процессы в организме протекают в тот или иной промежуток времени. Считаю, что только после знания подобного рода материала можно начинать создавать для себя методические системы по тренингу. Если же этого не знать, то многие из способов изменить тело будут наверняка из разряда «ткнуть пальцем в небо», т.е. они понятно на чем основанные. Это лишь мое мнение.
И еще просьба: если в статье есть что-то, на ваш взгляд, неверное, или какая-то неточность, то прошу об этом написать в комментариях (или мне в Л.С.).
Поехали..
Организм человека, а уж тем более спортсмена, никогда не работает в «линейном» (неизменном) режиме. Очень часто тренировочный процесс может заставить его перейти на предельно возможные для него «обороты». Для того, чтобы выдержать нагрузку, организм начинает оптимизировать свою работу под данный тип стресса. Если рассматривать именно силовой тренинг (бодибилдинг, пауэрлифтинг, тяжелая атлетика и пр.), то первым, кто подает сигнал в теле человека о необходимых временных перестройках (адаптация) являются наши мышцы.
Мышечная деятельность вызывает изменения не только в работающем волокне, но и приводит к биохимическим изменениям во всем организме. Усилению мышечного энергетического обмена предшествует значительное повышение активности нервной и гуморальной систем.
В предстартовом состоянии активизируется действие гипофиза, коры надпочечников, поджелудочной железы. Совместное действие адреналина и симпатической нервной системы приводит к: повышению ЧСС, увеличению объема циркулирующей крови, образованию в мышцах и проникновению в кровь метаболитов энергетического обмена (СО2, СН3-СН (ОН)-СООН, АМФ). Происходит перераспределение ионов калия, что приводит к расширению кровеносных сосудов мышц, сужению сосудов внутренних органов. Вышеуказанные факторы приводят к перераспределению общего кровотока организма, улучшая доставку кислорода к работающим мышцам.
Поскольку внутриклеточных запасов макроэргов хватает на непродолжительное время, то в предстартовом состоянии происходит мобилизация энергетических ресурсов организма. Под действием адреналина (гормон надпочечников) и глюкагона (гормон поджелудочной железы) усиливается распад гликогена печени до глюкозы, которая током крови переносится к работающим мышцам. Внутримышечный и печеночный гликоген — субстрат для ресинтеза АТФ в креатинфосфатных и гликолитических процессах.
С увеличением продолжительности работы (стадия аэробного ресинтеза АТФ), основную роль в энергообеспечении мышечного сокращения начинают играть продукты распада жиров (жирные кислоты и кетоновые тела). Липолиз (процесс расщепления жиров) активируется адреналином и соматотропином (он же «гормон роста»). В это же время усиливается печеночный «захват» и окисление липидов крови. В результате печень выбрасывает в кровяное русло значительные количества кетоновых тел, которые доокисляются до углекислого газа и воды в работающих мышцах. Процессы окисления липидов и углеводов протекают параллельно, а от количества последних зависит функциональная активность головного мозга и сердца. Поэтому, в период аэробного ресинтеза АТФ протекают процессы глюконеогенеза — синтез углеводов из веществ углеводородной природы. Регулирует этот процесс гормон надпочечников — кортизол. Основным субстратом глюконеогенеза являются аминокислоты. В незначительных количествах образования гликогена происходит и из жирных кислот (печень).
Переходя из состояния покоя к активной мышечной работе, потребность в кислороде значительно возрастает, поскольку последний является конечным акцептором электронов и протонов водорода системы дыхательной цепи митохондрий в клетках, обеспечивая процессы аэробного ресинтеза АТФ.
На качество кислородного обеспечения работающих мышц влияет «закисление» крови метаболитами процессов биологического окисления (молочная кислота, углекислый газ). Последние воздействуют на хеморецепторы стенок кровеносных сосудов, которые передают сигналы в ЦНС, усиливая активность дыхательного центра продолговатого мозга (участок перехода головного мозга в спинной).
Кислород из воздуха распространяется в кровь через стенки легочных альвеол (см. рисунок) и кровеносных капилляров вследствие разности его парциальных давлений:
1) Парциальное давление в альвеолярном воздухе — 100-105 мм. рт. ст
2) Парциальное давление в крови в состоянии покоя — 70-80 мм. рт. ст
3) Парциальное давление в крови при активной работе — 40-50 мм. рт. стТолько небольшой процент кислорода, поступающего в кровь, растворяется в плазме (0.3 мл на 100 мл крови). Основная часть связывается в эритроцитах гемоглобином:
Hb + O2 -> HbO2
Гемоглобин — белковая мультимолекула, состоящая из четырех вполне самостоятельных субъединиц. Каждая субъединица связана с гемом (гем — железосодержащая простетическая группа).
Присоединение кислорода к железосодержащей группе гемоглобина объясняют понятием родства. Родство к кислороду в различных белках различно и зависит от структуры белковой молекулы.
Молекула гемоглобина может присоединять 4 молекулы кислорода. На способность гемоглобина связывать кислород влияют следующие факторы: температура крови (чем она ниже, тем лучше связывается кислород, а ее повышение способствует распаду окси-гемоглобина); щелочная реакция крови.
После присоединения первых молекул кислорода, кислородная родство гемоглобина повышается в результате конформационных изменений полипептидных цепей глобина.
Обогащенная в легких кислородом кровь поступает в большой круг кровообращения (сердце в состоянии покоя перекачивает ежеминутно 5-6 литров крови, транспортируя при этом 250 — 300 мл О2). Во время же интенсивной работы за одну минуту скорость перекачки возрастает до 30-40 литров, а количество кислорода, что переносится кровью, составляет 5-6 литров.Попадая в работающие мышцы (благодаря наличию высоких концентраций СО2 и повышенной температуре) происходит ускоренный распад оксигемоглобина:
H-Hb-O2 -> H-Hb + O2
Поскольку давление углекислого газа в ткани больше, чем в крови, то освобожденный от кислорода гемоглобин обратимо связывает СО2, образуя карбаминогемоглобин:
H-Hb + СО2 -> H-Hb-CO2
который распадается в легких до углекислого газа и протонов водорода:
H-Hb-CO2 -> H + + Hb-+ CO2
Протоны водорода нейтрализуются отрицательно заряженными молекулами гемоглобина, а углекислый газ выводится в окружающую среду:
H + + Hb -> H-Hb
Несмотря на определенную активацию биохимических процессов и функциональных систем в предстартовом состоянии, при переходе из состояния покоя к интенсивной работе наблюдается определенный дисбаланс между потребностью в кислороде и его доставкой. Количество кислорода, которое необходимо для удовлетворения организма при выполнении мышечной работы, называется кислородным спросом организма. Однако, повышенная потребность кислорода какое-то время не может быть удовлетворена, потому необходимо некоторое время, чтобы усилить деятельность систем дыхания и кровообращения. Поэтому, начало любой интенсивной работы происходит в условиях недостаточного количества кислорода — кислородного дефицита.
Если работа осуществляется с максимальной мощностью за короткий промежуток времени, то потребность в кислороде так велика, что не может быть удовлетворена даже максимально возможным поглощением кислорода. Например, при беге на 100 м, организм снабжается кислородом на 5-10%, а 90-95% кислорода поступает после финиша. Избыток потребленного кислорода после выполненной работы называется кислородным долгом.
Первая часть кислорода, которая идет на ресинтез креатинфосфата (распавшегося при работе), получила название алактатного кислородного долга; вторая же часть кислорода, идущего на устранение молочной кислоты и ресинтез гликогена, называется лактатным кислородным долгом.
Рисунок. Кислородный приход, кислородный дефицит и кислородный долг при длительной работе разной мощности. А — при легкой, Б — при тяжелой, и В — при истощающей работе; I — период врабатывания; II — устойчивое (А, Б) и ложное устойчивое (В) состояние во время работы; III — восстановительный период после выполнения упражнения; 1 — алактатный, 2 — гликолитический компоненты кислородного долга (по Волкову Н. И., 1986).
Алактатный кислородный долг компенсируется относительно быстро (30 сек. — 1 мин.). Характеризует вклад креатинфосфата в энергетическое обеспечение мышечной деятельности.
Лактатный кислородный долг полностью компенсируется за 1.5-2 часа по окончании работы. Указывает долю гликолитических процессов в энергообеспечении. При длительной интенсивной работе в образовании лактатного кислородного долга присутствует значительная доля других процессов.
Выполнение интенсивной мышечной работы невозможно без интенсификации обменных процессов в нервной ткани и тканях сердечной мышцы. Лучшее энергообеспечение сердечной мышцы обусловливается рядом биохимических и анатомо-физиологических особенностей:
1. Сердечная мышца пронизана чрезвычайно большим количеством кровеносных капиляров по которым течет кровь с большой концентрацией кислорода.
2. Наиболее активными являются ферменты аэробного окисления.
3. В состоянии покоя в качестве энергетических субстратов используются жирные кислоты, кетоновые тела, глюкоза. При напряженной мышечной работе основным энергетическим субстратом является молочная кислота.Интенсификация обменных процессов нервной ткани выражается в следующем:
1. Увеличивается потребление глюкозы и кислорода в крови.
2. Повышается скорость восстановления гликогена и фосфолипидов.
3. Усиливается распад белков и образование аммиака.
4. Снижается общее количество запасов макроэргических фосфатов.
Поскольку биохимические изменения происходят в живых тканях, то непосредственно их наблюдать и изучать довольно проблематично. Поэтому, зная основные закономерности протекания обменных процессов, основные выводы об их течении делают на основе результатов анализа крови, мочи, выдыхаемого воздуха. Так, например, вклад креатинфосфатной реакции в энергетическое обеспечение мышц оценивается концентрацией продуктов распада (креатина и креатинина) в крови. Наиболее точным показателем интенсивности и емкости аэробных механизмов энергообеспечения является количество потребленного кислорода. Уровень развития гликолитических процессов оценивают по содержанию молочной кислоты в крови как во время работы, так и в первые минуты отдыха. Изменение показателей кислотного равновесия позволяет сделать вывод о способности организма противостоять кислым метаболитам анаэробного обмена.
Изменение скорости метаболических процессов при мышечной деятельности зависит от:
— Общего количества мышц, которые участвуют в работе;
— Режима работы мышц (статический или динамический);
— Интенсивности и продолжительности работы;
— Количества повторов и пауз отдыха между упражнениями.В зависимости от количества мышц, участвующих в работе, последняя делится на локальную (в исполнении участвуют менее 1/4 всех мышц), региональную и глобальную (участвуют более 3/4 мышц).
Локальная работа (шахматы, стрельба) — вызывает изменения в работающей мышце, не вызывая биохимических изменений в организме в целом.
Глобальная работа (ходьба, бег, плавание, лыжные гонки, хоккей и др..) — вызывает большие биохимические изменения во всех органах и тканях организма, наиболее сильно активизирует деятельность дыхательной и сердечно-сосудистой систем. В энергообеспечении работающих мышц чрезвычайно велик процент аэробных реакций.
Статический режим мышечного сокращения приводит к пережиму капиляров, а значит к худшему обеспечения кислородом и энергетическими субстратами работающие мышцы. В качестве энергетического обеспечения деятельности выступают анаэробные процессы. Отдыхом после выполнения статической работы должна быть динамическая низкоинтенсивная работы.
Динамический режим работы гораздо лучше обеспечивает кислородом работающие мышцы, потому попеременное сокращение мышц действует как своеобразный насос, проталкивая кровь сквозь капилляры.Зависимость биохимических процессов от мощности выполняемой работы и ее длительности выражается в следующем:
— Чем выше мощность (высокая скорость распада АТФ), тем выше доля анаэробного ресинтеза АТФ;
— Мощность (интенсивность), при которой достигается наивысшая степень гликолитических процессов энергообеспечения, называется мощностью истощения.Максимально возможная мощность определяется как максимальная анаэробная мощность. Мощность работы обратно пропорционально связана с продолжительностью работы: чем выше мощность, тем быстрее происходят биохимические изменения, приводящие к возникновению усталости.
Из всего сказанного можно сделать несколько простых выводов:
1) Во время тренировочного процесса идет интенсивный расход различных ресурсов (кислород, жирные кислоты, кетоны, белки, гормоны и многое другое). Именно поэтому организм спортсмена постоянно нуждается в обеспечении себя полезными веществами (питание, витамины, пищевые добавки). Без подобной поддержки велика вероятность причинить вред здоровью.
2) При переходе в «боевой» режим телу человека требуется некоторое время, чтобы адаптироваться к нагрузке. Именно поэтому не стоит с первой минуты тренировки предельно себя нагружать — организм просто к этому не готов.
3) По окончании тренировки тоже нужно помнить, что опять же требуется время, чтобы тело из возбужденного состояния перешло в спокойное. Хорошим вариантом для решения данного вопроса является заминка (снижение тренировочной интенсивности).
4) У организма человека есть свои пределы (ЧСС, давление, количество полезных веществ в крови, скорость синтеза веществ). Исходя из этого нужно подбирать оптимальный под себя тренинг по интенсивности и продолжительности, т.е. найти ту середину, при которой можно получить максимум положительного и мимимум отрицательного.
5) Должна использоваться как статика, так и динамика!
6) Не все так сложно, как сперва кажется..На этом и закончим.
P.S. Касательно усталости — есть еще одна статья (о которой тоже вчера писал в паблике — «Биохимические изменения при усталости и в период отдыха». Она в два раза короче и в 3 раза проще этой, но не знаю стоит ли ее здесь выкладывать. Просто суть ее в том, что она подытоживает выложенную здесь статью о суперкомпенсации и о «токсинах усталости». Для коллекции (полноты всей картины) могу ее тоже представить. Пишите в комментариях — нужно или нет.
Источник