Анализ крови на цитогенетическое исследование

Анализ крови на цитогенетическое исследование thumbnail
Цитогенетические исследования190204Цитогенетическое исследование (кариотип) Срок

12 — 24 к.д.

Стоимость

6750 руб.

190204

Цитогенетическое исследование (кариотип)

12 — 24 к.д.

433632

6750 руб.

/analizy-i-tseny/citogeneticheskoje-issledovanije-kariotip_190204/

Молекулярно-цитогенетические исследования (FISH)190206Молекулярно-цитогенетическая диагностика распространенных хромосомных нарушений (анеуплоидий) по 13, 18, 21, X, Y — хромосом Срок

5 — 18 к.д.

Стоимость

24190 руб.

190206

Молекулярно-цитогенетическая диагностика распространенных хромосомных нарушений (анеуплоидий) по 13, 18, 21, X, Y — хромосом

5 — 18 к.д.

433633

24190 руб.

/analizy-i-tseny/molekularno-citogeneticheskaja-diagnostika-rasprostranennyh-khromosomnyh-narushenij_190206/

190208Молекулярно-цитогенетическое исследование 22й хромосомы. Диагностика синдрома ДиДжорджи (22q11.2) Срок

5 — 18 к.д.

Стоимость

10150 руб.

190208

Молекулярно-цитогенетическое исследование 22й хромосомы. Диагностика синдрома ДиДжорджи (22q11.2)

5 — 18 к.д.

433633

10150 руб.

/analizy-i-tseny/molekularno-citogeneticheskoje-issledovanije-22j-khromosomy_190208/

190209Молекулярно-цитогенетическое исследование 15й хромосомы. Диагностика синдромов Прадера-Вилли/Ангельмана (15q11-q13) Срок

5 — 18 к.д.

Стоимость

10150 руб.

190209

Молекулярно-цитогенетическое исследование 15й хромосомы. Диагностика синдромов Прадера-Вилли/Ангельмана (15q11-q13)

5 — 18 к.д.

433633

10150 руб.

/analizy-i-tseny/molekularno-citogeneticheskoje-issledovanije-15j-khromosomy_190209/

190210Молекулярно-цитогенетическая диагностика хромосомной патологии SRY/X Срок

5 — 18 к.д.

Стоимость

10150 руб.

190210

Молекулярно-цитогенетическая диагностика хромосомной патологии SRY/X

5 — 18 к.д.

433633

10150 руб.

/analizy-i-tseny/molekularno-citogeneticheskaja-diagnostika-khromosomnoj-patologii-sryx_190210/

190211Молекулярно-цитогенетическое исследование 4й хромосомы. Диагностика синдрома Вольфа-Хиршхорна (4p16.3) Срок

5 — 18 к.д.

Стоимость

10150 руб.

190211

Молекулярно-цитогенетическое исследование 4й хромосомы. Диагностика синдрома Вольфа-Хиршхорна (4p16.3)

5 — 18 к.д.

433633

10150 руб.

/analizy-i-tseny/molekularno-citogeneticheskoje-issledovanije-4j-khromosomy_190211/

190212Молекулярно-цитогенетическое исследование 5й хромосомы. Диагностика синдрома «кошачьего крика» (5p15.2) Срок

5 — 18 к.д.

Стоимость

10150 руб.

190212

Молекулярно-цитогенетическое исследование 5й хромосомы. Диагностика синдрома «кошачьего крика» (5p15.2)

5 — 18 к.д.

433633

10150 руб.

/analizy-i-tseny/molekularno-citogeneticheskoje-issledovanije-5j-khromosomy_190212/

190213Молекулярно-цитогенетическое исследование Y хромосомы (Y(q12)) Срок

5 — 18 к.д.

Стоимость

10150 руб.

190213

Молекулярно-цитогенетическое исследование Y хромосомы (Y(q12))

5 — 18 к.д.

433633

10150 руб.

/analizy-i-tseny/molekularno-citogeneticheskoje-issledovanije-y-khromosomy_190213/

190217Молекулярно-цитогенетическое исследование хориона при неразвивающейся беременности на наиболее частые анеуплоидии (FISH) Срок

12 — 24 к.д.

Стоимость

17590 руб.

190217

Молекулярно-цитогенетическое исследование хориона при неразвивающейся беременности на наиболее частые анеуплоидии (FISH)

12 — 24 к.д.

433633

17590 руб.

/analizy-i-tseny/molekularno-citogeneticheskoje-issledovanije-khoriona-pri-nerazvivajushhejsa-beremennosti-na-naiboleje-chastyje-aneuploidii-fish-190217/

Источник

Современная медицина может предложить будущим родителям не только узнать пол ребенка и увидеть его черты лица, но и заранее определить, какие болезни ждут их отпрыска в будущем. Помогает в этом цитогенетическое исследование. Для его проведения достаточно нескольких миллилитров крови или любой другой жидкости/ткани плода. После проведения сложных химических и физических манипуляций с материалом врач-генетик может дать ответы на интересующие семью вопросы.

Определение

цитогенетическое исследование

Цитогенетическое исследование – это микробиологическое исследование генетического материала человека с целью выявления генных, хромосомных или митохондриальных мутаций, а также онкологических заболеваний. Значение этого исследования определяется доступностью клеток для кариотипирования и изучения происходящих в них изменений.

Внешний вид молекулы ДНК в ядре клетки сильно варьируется в зависимости от фазы клеточного цикла. Для того чтобы провести анализ, необходимо, чтобы произошла конъюгация хромосом, которая бывает в метафазе мейоза. При качественном заборе материала каждая хромосома видна как две отдельные хроматиды, расположенные в центре клетки. Это идеальный вариант, чтобы провести цитогенетическое исследование. Кариотип человека в норме состоит из 22 пар аутосом и двух половых хромосом. У женщин это ХХ, а у мужчин — ХУ.

Показания

цитогенетическое исследование хориона

Цитологическое исследование проводится при наличии конкретных показаний как со стороны родителей, так и со стороны ребенка:

— мужское бесплодие;
— первичная аменорея;
— привычное невынашивание беременности;
— мертворождение в анамнезе;
— наличие детей с хромосомными аномалиями;
— наличие детей с пороками развития;
— перед процедурой экстракорпорального оплодотворения (ЭКО);
— наличие в анамнезе неудачных ЭКО.

Для плода существуют отдельные показания:

— наличие у родившегося ребенка пороков развития;
— умственная отсталость;
— задержка психомоторного развития;
— аномалии пола.

Исследование крови и костного мозга

цитогенетическое исследование плода

Цитогенетическое исследование крови и костного мозга проводится для определения кариотипа, выявления количественных и качественных нарушений в структуре хромосом, а также подтверждения онкологического заболевания. Клетки крови с ядрами (лейкоциты) культивируют в питательной среде трое суток, затем фиксируют полученный материал на предметном стекле и изучают под микроскопом. На этом этапе важно качественное окрашивание зафиксированного материала и уровень подготовки врача-лаборанта, который будет осуществлять исследование.

Для анализа костного мозга необходимо получить из биоптата не менее двадцати клеток. Забор материала должен проводиться только в условиях лечебного учреждения, так как процедура болезненная, а кроме того, необходимы стерильные условия для предупреждения инфицирования места пункции.

Исследование плода

цитогенетическое исследование крови

Цитогенетическое исследование плода назначается врачом-генетиком после консультации супружеской пары. Существует несколько вариантов забора материала для этого анализа. Самый ранний – это биопсия плаценты. Забор материала на цитогенетическое исследование хориона проводится трансвагинально, под контролем УЗИ. Аспирационной иглой берется несколько ворсинок будущей плаценты, которые уже содержат ДНК эмбриона. Процедуру можно проводить с 10-й недели беременности. Начиная с третьего месяца разрешается делать амниоцентез. Это аспирация околоплодных вод, где находятся клетки эпителия плода, которые можно использовать как материал для исследования.

Третий вариант – кордоцентез. Данная процедура может навредить ребенку, поэтому показания должны быть достаточно вескими. Через переднюю брюшную стенку в амниотический пузырь вводится игла, которая затем должна попасть в вену пуповины и забрать часть крови. Вся процедура проводится под УЗИ-контролем.

С помощью этих методов можно определить моногенные, хромосомные и митохондриальные патологии будущего ребенка и принять решение о продлении либо прерывании беременности.

Анализ опухолевых клеток

материал цитогенетических исследований

Молекулярно-цитогенетическое исследование хромосом раковых клеток затруднено из-за их морфологических изменений, а также плохой различимости полос. Это может быть транслокация, делеция и т. д. На современном уровне для исследования таких образцов используют гибридизацию in situ (т. е. «на месте»). Это позволяет выявить местоположение хромосом в любой молекуле ДНК или РНК. Можно таким образом искать и маркеры других заболеваний. Важно, что проводить исследования можно не только в метафазу, но и в интерфазу, что увеличивает количество материала.

Главная загвоздка состоит именно в маркерах онкологических заболеваний, так как в каждом конкретном случае необходимо приготовить индивидуальную последовательность нуклеотидов и размножить ее. Затем, после накопления достаточного количества исследуемой ДНК, проводится, собственно, гибридизация. В конце нужно отделить участки, которые были выявлены, и сделать вывод о результатах исследования.

Виды нарушения хромосом

цитогенетическое исследование кариотип

На сегодняшний день насчитывают несколько видов хромосомных нарушений:

— моносомии – наличие только одной хромосомы из пары (болезнь Шерешевского — Тернера);
— трисомии – добавление еще одной хромосомы (сидром суперженщины и супермужчины, Дауна, Патау, Эдвардса);
— делеция – удаление участка хромосомы (мозаичные формы хромосомных патологий);
— дупликация – дублирование определенного участка хромосомного плеча;
— инверсия – поворот участка хромосомы на сто восемьдесят градусов;
— транслокация – перенос участков генома с одной хромосомы на другую.

Структурные нарушения хромосом передаются следующему поколению и могут накапливаться, поэтому возрастает риск рождения больных детей. Материал цитогенетических исследований тщательно изучается на предмет наличия повреждений, и по нему делается заключение о состоянии всего организма.

Клиническое значение

молекулярно цитогенетическое исследование

Клетка, которая имеет приобретенную или врожденную аномалию, может стать предшественницей целого клана клеток, которые сформируют опухоль или стигму дисэмбриогенеза. Своевременное их обнаружение способствует ранней постановке диагноза и принятию решения о дальнейшей тактике лечения. Цитогенетическое исследование дало возможность многим супружеским парам, имеющим дефектные рецессивные гены, родить здоровых детей либо, если это невозможно, задуматься о процедуре ЭКО и суррогатном материнстве.

Источник

Метод определения
Цитогенетический анализ.

Исследуемый материал
костный мозг

Цитогенетическое исследование клеток костного мозга (кариотипирование) – это микроскопический анализ хромосом, который проводится для определения кариотипа, выявления численных и структурных нарушений в структуре хромосом, а также подтверждения онкологического заболевания. 

Результаты цитогенетического исследования очень важны для постановки диагноза, классификации, лечения и научного исследования заболеваний системы крови, прежде всего-онкогематологических (лейкозов, миелодиспластических синдромов и хронических миелопролиферативных заболеваний).

Клетки костного мозга культивируют в специально приготовленной питательной среде в течение суток (24 часа), затем фиксируют полученный материал на предметном стекле дифференциально окрашивают по Гимзе (G-banding) и анализируют с использованием микроскопа и компьютерной системы видеоанализа. 

Анализ хромосом под микроскопом производится на стадии метафазы, когда хромосомы максимально видны и располагаются в центре клетки. Нормальные клетки содержат 22 пары аутосом и одну пару половых хромосом: две Х-хромосомы у женщин и по одной копии половых хромосом (X и Y) — у мужчин. 

В каждом отдельном случае анализируется 20 метафазных пластин. 

На сегодняшний день насчитывают несколько наиболее часто встречающихся видов хромосомных нарушений: количественные нарушения – моносомии (наличие только одной хромосом из пары), трисомии-добавление одной или нескольких хромосом. 

Качественные нарушения (так называемые аберрации или поломки хромосом): делеция –удаление участка хромосомы, транслокация – перенос участков генома с одной хромосомы на другую, дупликация-дублирование определенного участка хромосомного плеча, инверсия-поворот участка хромосомы на 180 градусов. 

Клиническое значение: клетка, которая имеет приобретенную или врожденную аномалию, может стать предшественницей целого клона клеток, формирующих опухоль. Своевременное обнаружение таких клеток способствует ранней постановке диагноза и назначению правильной дальнейшей тактики лечения. 

Присутствие специфических хромосомный аномалий помогает выделить группы пациентов, которым требуется назначение специфической терапии. Например, обнаружение транслокаций t(15;17) подтверждает диагноз острого промиелоцитарного лейкоза (ОМЛ-М3), в комплексном лечении которого требуется ретиноевая кислота. 

Результаты цитогенетического исследования имеют значение не только для постановки диагноза, но и для определения прогноза заболевания. Так, например, обнаружение множественных хромосомных аномалий у больных острыми лейкозами является прогностически неблагоприятным фактором и может служить основанием для выполнения трансплантации костного мозга. 

Цитогенетический анализ у пациентов после проведенного лечения помогает контролировать степень элиминации патологического клона и, соответственно, оценить полноту ремиссии. 

Литература

  1. Абдулкадыров К.М. Клиническая гематология. Справочник-СПБ: Питер,2006.-С.448.  
  2. Д. Гарифуллин, С.В. Волошин, И.С. Мартынкевич и др. Генетические аномалии: влияние на эффективность терапии, выживаемость больных множественной миеломой, роль в оценке минимальной остаточной болезни / Медицинская генетика. – 2016. – Т. 15, №9. – С. 29-39. 
  3. Araber D.A.,Orazi A.,Hasserjian R. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016;127(10):2391-2405.

Источник

Цитогенетическое обследование — анализ на выявление нарушений хромосомного набора человека. Хромосомы представляют собой плотно упакованные нити ДНК, которая содержит информацию о геноме человека. Количество и структура хромосом строго специфична для каждого вида. У человека в ядрах соматических (не половых) клеток содержится в норме 46 хромосом (23 пары). Одна из пар — половые хромосомы — определяет пол человека. У женщины имеется 2 X хромосомы, такой кариотип обозначается как 46XX, у мужчины есть одна X и одна Y хромосома (кариотип 46XY). Неполовые хромосомы называются аутосомами.

Хромосомы в обычном состоянии клетки в ядре не видны, они становятся видны под микроскопом только на определенных фазах деления клеток. Для изучения кариотипа используются клетки в метафазе митоза.

Для проведения исследования у пациента берут кровь и выделяют из нее уже известные Вам лимфоциты. Для того, чтобы заставить их делиться нужна чужеродная стимуляция. Однако при кариотипировании используются специальные вещества (митогены), которые заставляют лимфоциты делиться независимо от их специфичности. В этом главное отличие от СКЛ. (Там никакие химические стимуляторы не применяются).

Через несколько дней деления культура обрабатывается специальным веществом, которое останавливает процесс деления клеток именно на той стадии, когда видны хромосомы. Из клеток культуры готовятся специальные мазки на стеклах, которые будут использованы для исследования. Для получения дополнительной информации о структуре хромосом используется специальная окраска (G-бэндинг) в результате которой каждая хромосома приобретает специфическую поперечную исчерченность. Каждая такая полоска называется G-блоком.

Теперь хромосомы полностью готовы для анализа.

Первая стадия анализа называется кариологией. В большинстве центров, производящим генетическое исследование анализ ограничивается только этой стадией. Специалист генетик анализирует под микроскопом 12-15 клеток на предмет выявления количественных и структурных аберраций. К количественным аберрациям относятся изменения числа хромосом. Например, при синдроме Дауна имеется лишняя 21-я хромосома. Структурные аберрации представляют собой изменение самих хромосом (инверсия — поворот участка хромосомы на 180., делеция — выпадение участка хромосомы, транслокация — перенос части одной хромосомы на другую хромосому, и т. д.). Аберрации могут носить регулярный и нерегулярный характер. Регулярные аберрации обнаруживаются в большом проценте клеток или во всех клетках. Они возникают в момент зачатия или в первые дни после зачатия. Нерегулярные мутации чаще всего являются свидетельством дейстия на организм неблагоприятных факторов (радиация, химические вредности и пр.).

Для выяснения следов действия вредных факторов на геном анализа 12-15 клеток бывает недостаточно (в большинстве случаев после такого анализа пациенты получают узенькую бумажку, в которой указано, что он мужчина, а она женщина).

Поэтому следующей стадией генетического обследования, которая очень важна для пациентов с бесплодием и невынашиванием беременности, является анализ на аберрации. Это расширенное генетическое обследование, при котором подробно анализируется 100 клеток, и расчитывается процент аномальных метафаз. Этот анализ хорошо выявляет возможные следы действия вредных факторов на геном человека. Из-за трудоемкости анализа (на исследование одного человека уходит целый рабочий день специалиста очень высокой квалификации) немногие медицинские центры делают анализ на аберрации.

Цитогенетическое обследование позволяет:

  1. Выявить такие случаи бесплодия или невынашивания беременности, когда шансы появления потомства у одного из супругов резко снижены или отсутствуют вовсе.
  2. Выявить случаи значительного повышения нестабильности генома, когда специальное лечение (антиоксиданты и иммуномодуляторы) позволяет в какой-то степени снизить риск развития сбоев при зачатии.

Источник

Метод определения
Культивирование лимфоцитов периферической крови, микроскопия дифференциально окрашенных метафазных хромосом.

Исследуемый материал
Цельная кровь (с гепарином, без геля)

ИССЛЕДОВАНИЕ НЕ ЯВЛЯЕТСЯ АНАЛОГОМ АНА-ТЕЛОФАЗНОГО МЕТОДА АНАЛИЗА ХРОМОСОМНЫХ АБЕРРАЦИЙ (100 клеток)!

КАРИОТИПИРОВАНИЕ ВХОДИТ В СОСТАВ ИССЛЕДОВАНИЙ: Генетические VIP-профили

  • 101 ГПМ Полное генетическое обследование для мужчин
  • 101 ГПЖ Полное генетическое обследование для женщин
  • 102 ГПМ Полное генетическое обследование супружеской пары (мужчина)
  • 102 ГПЖ Полное генетическое обследование супружеской пары (женщина)
  • 103 ГПМ Полное генетическое обследование ребёнка (мальчик)
  • 103 ГПЖ Полное генетическое обследование ребёнка (девочка)

Репродуктивное здоровье

Репродуктивное здоровье женщины

  • 109 ГП Женское бесплодие и осложнение беременности

Репродуктивное здоровье мужчины

  • 107 ГП Мужское бесплодие (+кариотип)

Кариотип — это совокупность признаков полного набора хромосом соматических клеток организма на стадии метафазы (III фаза деления клетки) – их количество, размер, форма, особенности строения. Исследование кариотипа проводят методом световой микроскопии с целью выявления патологии хромосом. Чаще всего это исследование проводят у детей для выявления заболеваний, обусловленных нарушениями в хромосомах и у супругов при бесплодии или привычном невынашивании беременности. Выявление хромосомных перестроек в этом случае позволяет установить причину бесплодия и прогнозировать риск рождения в данной семье детей с хромосомной патологией. Вне процесса деления клетки хромосомы в её ядре расположены в виде «распакованной» молекулы ДНК, и они трудно доступны для осмотра в световом микроскопе. Для того, чтобы хромосомы и их структура стали хорошо видны используют специальные красители, позволяющие выявлять гетерогенные (неоднородные) участки хромосом и проводить их анализ – определять кариотип. Хромосомы в световом микроскопе на стадии метафазы представляют собой молекулы ДНК, упакованные при помощи особых белков в плотные сверхспирализованные палочковидные структуры. Таким образом, большое число хромосом упаковывается в маленький объём и помещается в относительно небольшом объёме ядра клетки. Расположение хромосом, видимое в микроскопе, фотографируют и из нескольких фотографий собирают систематизированный кариотип — нумерованный набор хромосомных пар гомологичных хромосом. Изображения хромосом при этом ориентируют вертикально, короткими плечами вверх, а их нумерацию производят в порядке убывания размеров. Пару половых хромосом помещают в самом конце изображения набора хромосом. Современные методы кариотипирования обеспечивают детальное обнаружение хромосомных аберраций (внутрихромосомных и межхромосомных перестроек), нарушения порядка расположения фрагментов хромосом — делеции, дупликации, инверсии, транслокации. Такое исследование кариотипа позволяет диагностировать ряд хромосомных заболеваний, вызванных как грубыми нарушениями кариотипов (нарушение числа хромосом), так и нарушением хромосомной структуры или множественностью клеточных кариотипов в организме. Нарушения нормального кариотипа у человека возникают на ранних стадиях развития организма. Если это происходит в половых клеток будущих родителей (в процессе гаметогенеза), то кариотип зиготы (см.), образовавшейся при слиянии родительских клеток, также оказывается нарушенным. При дальнейшем делении такой зиготы все клетки эмбриона и развившегося из него организма окажутся с одинаково аномальным кариотипом. Однако, нарушения кариотипа могут возникнуть и на ранних стадиях дробления зиготы. Развившийся из такой зиготы организм содержит несколько линий клеток (клеточных клонов) с разными кариотипами. Такое многообразие кариотипов во всём организме или только в некоторых его органах называют мозаицизмом. Как правило, нарушения кариотипа у человека сопровождаются различными, в том числе комплексными, пороками развития, и большинство таких аномалий несовместимо с жизнью. Это приводит к самопроизвольным абортам на ранних стадиях беременности. Однако достаточно большое число плодов (~2,5%) с аномальными кариотипами донашивают до окончания беременности. Ниже приведена таблица, в которой представлены заболевания, обусловленные нарушениями в кариотипе.

КариотипыБолезньКомментарии
47,XXY; 48,XXXYСиндром КлайнфельтераПолисомия по X-хромосоме у мужчин
45X0; 45X0/46XX; 45,X/46,XY; 46,X iso (Xq)Синдром Шерешевского — ТернераМоносомия по X-хромосоме, в т. ч. и мозаицизм
47,ХХX; 48,ХХХХ; 49,ХХХХХПолисомии по X хромосомеНаиболее часто — трисомия X
47,ХХ,+21; 47,ХY,+21Болезнь ДаунаТрисомия по 21-й хромосоме
47,ХХ,+18; 47,ХY,+18Синдром ЭдвардсаТрисомия по 18-й хромосоме
47,ХХ,+13; 47,ХY,+13Синдром ПатауТрисомия по 13-й хромосоме
46,XX, 5р-Синдром кошачьего крикаДелеция короткого плеча 5-й хромосомы

Литература

  1. Фок Р. Генетика эндокринных болезней. — Эндокринология / Под ред. Лавина Н. — М.: Практика, 1999.
  2. Karger S., Basel. An International System for Human Cytogenetic Nomenclature, Mitelman, F (ed). ISCN, 1995.
  3. Международная классификация болезней. Врождённые аномалии (пороки развития), деформации и хромосомные нарушения (Q00-Q99). Хромосомные аномалии, не классифицированные в других рубриках (Q90-Q99).
  4. Хромосомные болезни // НЕВРОНЕТ https://www.neuronet.ru/bibliot/semiotika/11_3.html

Необходимо сдавать в состоянии сытости, не рекомендуется сдавать данный тест натощак. Следует воздержаться от приёма антибиотиков за месяц до исследования на кариотип. Не рекомендуется сдавать кровь единовременно с тестами, имеющие строгую подготовку к сдаче биоматериала (биохимический анализ крови, клинический анализ крови, часть тестов на инфекции и т.д.).

Рекомендуется предварительная консультация врача лаборатории ИНВИТРО с обязательным заполнением специальной 

анкеты

.

  • Бесплодие в браке.
  • Первичная аменорея.
  • Спонтанные выкидыши (два и более).
  • Неразвивающиеся беременности.
  • Случаи мёртворождения в семье.
  • Случаи ранней детской смертности в семье (до 1 года).
  • Врождённые пороки развития (особенно множественные пороки) у ребёнка.
  • Задержка умственного и/или физического развития ребёнка.
  • Нарушение половой дифференцировки у новорождённого.
  • Подозрение на хромосомную болезнь или наследственный синдром по клинической симптоматике (например: изменение формы и размеров черепа, аномалии глаз, носа, пальцев, внешних гениталий и пр.).
  • Случаи рождения детей с умственной отсталостью, хромосомной аномалией или врождёнными пороками развития в родословной.
  • Обследование перед проведением вспомогательных репродуктивных технологий (ЭКО, ИКСИ и др.).

Интерпретация результатов

Интерпретация результатов исследований содержит информацию для лечащего врача и не является диагнозом. Информацию из этого раздела нельзя использовать для самодиагностики и самолечения. Точный диагноз ставит врач, используя как результаты данного обследования, так и нужную информацию из других источников: анамнеза, результатов других обследований и т.д.

Частота хромосомных нарушений: 2,4 случая на 1000 родившихся детей. Варианты заключений:

  • 46, XY — нормальный мужской;
  • 46, XX — нормальный женский.

Другие варианты — записывают в форме согласно международной цитогенетической номенклатуре.

Источник