Анализ газового состава крови показатели
Анализ газового состава крови (анализ артериальной крови ABG), представляет собой тест, который измеряет количество кислорода и углекислого газа в крови, а также кислотность (рН) крови. Анализ ABG оценивает, насколько эффективно легкие подают кислород в кровь и насколько эффективно они устраняют углекислый газ из него. Тест также показывает, насколько хорошо легкие и почки взаимодействуют для поддержания нормального рН крови (кислотно-щелочной баланс). Тестирование крови, как правило, проводится для оценки респираторных заболеваний и других состояний, которые могут влиять на легкие, а также для регулирования здоровья пациентов, получающих кислородную терапию (респираторная терапия). Кроме того, кислотно-базовый компонент теста содержит информацию о функции почек.
Что такое анализ газового состава крови?
Тест проводится по крови из артерии. Он измеряет парциальное давление и углекислый газ в крови, а также содержание кислорода, насыщенность им, содержание бикарбоната и рН крови. Кислород в легких переносится в ткани через кровоток, но только небольшое количество может фактически растворяться в артериальной крови. Количество этого газа зависит от парциального давления кислорода (давление, которое газ оказывает на стенки артерий). Поэтому тестирование парциального давления кислорода фактически измеряет, сколько его доставляется в легкие через кровь.
Двуокись углерода выделяется как побочный продукт клеточного метаболизма. Его частичное давление указывает, насколько хорошо легкие устраняют этот углекислый газ. Остальная часть кислорода, который не растворяется в крови, сочетается с гемоглобином, соединением белка и железа, содержащимся в эритроцитах. Измерение содержания кислорода в анализе ABG показывает, сколько кислорода сочетается с гемоглобином. Важным показателем является насыщение кислородом, которое сравнивает количество кислорода, фактически связанного с гемоглобином и с общим количеством кислорода.
Как проходит процедура?
Специальной подготовки к процедуре нет. Пациентам не ставят ограничений на выпивку или еду перед тестом. Концентрация кислорода должна оставаться неизменной в течение 20 минут до анализа; если тест нужно проводить без насыщения кислородом, газ должен быть отключен на 20 минут до проведения теста. Во время теста пациенту следует нормально дышать. Образец крови получают путем артериальной пункции (обычно в запястье, хотя может проводиться в пах или руку). Если требуется прокол, кожа поверх артерии очищается антисептиком. Затем медик собирает кровь с помощью небольшой стерильной иглы, прикрепленной к одноразовому шприцу. Пациент может почувствовать короткое пульсирование или судороги в месте прокола. После того, как материал будет собран, он должен быть доставлен в лабораторию для анализа как можно скорее.
После того, как кровь была взята, врач или пациент прижимает вату к месту прокола на 10-15 минут, чтобы остановить кровь, а затем плотно обматывает повязкой. Пациент должен спокойно отдохнуть после завершения процедуры. Медицинские работники будут наблюдать за признаками кровотечения или проблемами с кровообращением. Риски их получить, когда тест выполняется правильно – очень низкие. Включают кровотечение или кровоподтеки на месте сдачи крови или через некоторое время. Очень редко может возникнуть проблема с циркуляцией в области прокола.
Результаты тестирования
Результаты анализа состоят из нескольких показателей, которые помогут определить насколько эффективно функционирует кровяная система. Также они выражают уровень насыщения организма кислородом, что очень важно для внутренних органов. Основными критериями являются:
Частичное давление (РР)
Частичное давление – это способ оценки количества молекул определенного газа в смеси газов. Это количество давления конкретного газа в общем давление. Например, мы обычно дышим воздухом, который на уровне моря имеет давление 100 кПа, кислород составляет 21% от 100 кПа, что соответствует парциальному давлению 21 кПа. При проверке газов крови закон Генри используется для определения парциальных давлений газов в крови. Этот закон гласит, что, когда газ растворяется в жидкости, парциальное давление (то есть концентрация газа) внутри жидкости такое же, как и в газе, контактирующем с жидкостью. Поэтому можно измерить парциальное давление газов в крови. Вы увидите графу с пометками PaO2 – парциальное давление кислорода в артериальной крови и PaCO2 – парциальное давление углекислого газа.
Базовый избыток (BE)
Это количество сильного основания, которое необходимо добавить или вычесть из вещества, чтобы вернуть рН в норму (7.40). Значение вне нормального диапазона (от -2 до +2) указывает на метаболическую причину ацидоза или алкалоза.
Бикарбонат (HCO3)
Бикарбонат продуцируется почками и действует как буфер для поддержания рН. Нормальный диапазон для бикарбоната составляет 22-26 мм / л. Если в крови есть дополнительные кислоты, уровень бикарбоната будет падать, поскольку ионы используются для буферизации этих кислот. Если есть хронический ацидоз, почками продуцируется немного больше бикарбоната, чтобы поддерживать рН в норме. Именно по этой причине повышенный бикарбонат может наблюдаться при хронической респираторной недостаточности 2-го типа, когда рН остается нормальным, несмотря на повышенный СО2.
Электролиты
Венозный или артериальный анализ газа – хороший способ быстро проверить показатели калия и натрия. Это особенно важно при непосредственном лечении сердечных аритмий, поскольку дает немедленный результат.
Лактат
Вырабатывается как побочный продукт анаэробного дыхания. Повышенный лактат может быть вызван любым процессом, который заставляет ткань использовать анаэробное дыхание. Это эффективный показатель плохой перфузии тканей.
Глюкоза
Глюкоза особенно важна при лечении пациента, который страдает потерей сознания или частыми судорогами. Это также необходимо для пациентов с подозрением на диабет. Глюкоза может повышаться у пациентов с тяжелым сепсисом или другим метаболическим стрессом.
Другие компоненты анализа
Они редко нарушаются и часто упускаются из виду. Однако важно заметить, если они вне нормы. Это особенно актуально в случае окиси углерода, так как могут быть другие люди, которым грозит опасность.
Окись углерода (CO)
Обычно СО составляет <10%. У жителей города или курильщиков уровни могут повышаться до 10%, но уровень> 10% указывает на отравление, обычно из-за слабо вентилируемых котлов или старых систем отопления. При уровнях 10-20% будут наблюдаться симптомы, такие как тошнота, головная боль, рвота и головокружение. При более высоких уровнях пациенты могут испытывать аритмию, сердечную ишемию, респираторную недостаточность и лёгкие судороги.
Эффективность анализа
Тестирование гарантирует почти стопроцентный результат данных о функционировании кровеносной системы вашего организма. Если случаются ошибки, то, чаще всего, из-за невнимательности персонала. Эффективность сдачи анализа и результата напрямую зависит от аккуратности медицинского сотрудника. Исследование кровяных газов часто подвергается риску ошибок, вызванных неправильной выборкой, транспортировкой и хранением. Поэтому лабораториям следует придерживаться особых рекомендаций по предотвращению потенциальных ошибок, вызванных неправильным обращением с образцом.
Тест должен выполняться обученным персоналом лаборатории. Компетенция сотрудников, ответственных за анализ крови, должна оцениваться для новых работников, а квалификация переоценивается ежегодно. Это будет гарантировать более точный результат. Необходимо регистрировать время сдачи образца в центральную лабораторию. Время между отбором проб и анализом не должно превышать 30 минут. Если время превышает рекомендуемый интервал, необходимо проинформировать об этом клинический персонал, который будет исследовать кровь.
Для избегания недоразумений и путаницы, пациенту необходимо попросить, чтобы емкость с его материалом подписали или надежно приклеили пометку с фамилией. Перед тестированием работник, ответственный за анализ образцов, должен проверить детали на этикетке в соответствии с данными на бланке теста, чтобы подтвердить идентификацию пациента. Если образец необходимо погружать в ледяную суспензию (смесь льда и воды) до тех пор, пока анализ не будет выполнен (то есть, если ожидается задержка более 30 минут), целостность этикеток должна быть защищена даже во время погружения.
Немаловажной является и сама процедура. Правильные результаты гарантированы в том случае, если придерживается точный ход анализа. Перед тестом необходимо проверить качество образца цельной крови. Пробы крови, содержащие пузырьки воздуха или видимые сгустки, неприемлемы для анализа. Правильное смешивание образцов цельной крови имеет решающее значение для получения точных результатов гемоглобина. Капиллярные образцы следует смешивать с помощью металлического стержня и магнита. Магнит следует перемещать из конца в конец по капилляру, пока компоненты не будут равномерно распределены (гомогенизированы) или не менее 5 секунд. Один конец капилляра следует открыть, осторожно удалив крышку герметика. Металлический стержень нужно удалить, медленно потянув магнит над капилляром, стараясь не проливать кровь и не вводить воздух в образец. Перед введением образца в анализатор, противоположный конец капилляра следует открыть, удалив оставшуюся крышку герметика. Образец должен быть пропущен до конца, чтобы удалить захваченный воздух.
Анализ газового состава крови – это эффективный метод проверки циркуляции кислорода в крови. Он не определит конкретные болезни, но покажет, могут ли они проявиться в будущем. Насыщенный кислородом организм лучше функционирует, а количество жалоб на здоровье значительно уменьшается. По мнению медиков, для полной диагностики организма время от времени следует проводить анализ газового состава крови.
Больше свежей и актуальной информации о здоровье на нашем канале в Telegram. Подписывайтесь: https://t.me/foodandhealthru
Источник
Материалы публикуются для ознакомления, и не являются предписанием к лечению! Рекомендуем обратиться к врачу-гематологу в вашем лечебном учреждении!
Соавторы: Марковец Наталья Викторовна, врач-гематолог
Из показателей крови анализируются не только форменные (клеточные) элементы и высокомолекулярные соединения (белки, билирубин, мочевина, креатинин и т.д.), но и газы. Прежде всего, интересуют кислород и углекислый газ. Ведь именно от них зависит возможность и полноценность дыхания.
>
Газовый состав крови — один из показателей гомеостаза (постоянства) организма. Конечно, всем подряд проверять содержание в крови газов не стоит. Для этого существуют особые показания. Почти всегда газы крови определяют в стационарных условиях.
Обычно при ургентных (экстренных или запущенных) состояниях становится нужен такой анализ. Газовый состав крови помогает врачу понять прогноз пациента и дать правильную оценку эффективности проводимой терапии.
Показатели газового гомеостаза крови и их трактовка
Показательным является не только и даже не столько объемный процент содержания углекислоты или кислорода, а парциальное давление и, в конечном итоге, по формуле высчитываемый процент насыщения крови кислородом.
Врачей интересуют 6 показателей:
- процентное содержание кислорода (норма — 10,5-14,5 объемных %);
- процентное содержание углекислого газа (нормальный показатель — 44,5 — 52,5 объемных %);
- парциальное давление кислорода — рО2 (составляет 35-46 мм рт. ст.);
- парциальное давление углекислого газа — рСО2 (границы нормы — 81-99 мм рт. ст.);
- кислородная емкость гемоглобина (около 20 объемных %);
- % насыщения кислородом (обычно составляет 61-70%).
Транспорт газов крови по организму
Парциальное давление газов — это такое давление, при котором начинается физическое растворение газа в крови. Значит, кислород при таком давлении работает эффективно в организме. Если же рО2 отклоняется в большую или меньшую сторону, это говорит о наличии факторов или заболеваний, мешающих использовать кислород тканям по назначению.
Важно. Поскольку нынешние диагностические возможности позволяют определить только газовый состав венозной крови, стандарты реаниматологии и хирургии сориентированы на нее.
Анализ газов крови производится на специальном аппарате — van Slyke. Кровь собирают в особую пробирку или шприц, внутренняя поверхность которого обработана гепарином или оксалатом калия для предотвращения свертывания.
Картриджный анализатор газов крови
100%-ая сатурация кислородом при реанимационных мероприятиях — это не всегда хорошо. Ведь содержащийся в крови углекислый газ активирует дыхательный центр, а значит, регулирует частоту и глубину дыхания.
Важно. Углекислый газ стимулирует хеморецепторы в каротидном синусе сонной артерии. Это позволяет поддерживать артериальное давление на должном уровне и работу дыхательного центра.
Каротидный синус в месте бифуркации (раздвоения) сонной артерии
Взаимосвязь содержания газов крови с патологическими заболеваниями (состояниями) организма
Существует прямая корреляция между газовым составом крови и нарушениями в сердечно-легочной системе, к которым приводят разные болезни.
Определение газового состава крови необходимо для диагностики:
- гипервентиляции (первичной и искусственной — от аппарата ИВЛ);
- дыхательной недостаточности.
Первичная гипервентиляция чаще всего связана с особенностями психики и возбудимости вегетативной нервной системы. Панические атаки, немотивированный страх могут начаться ощущением затрудненности дыхания и нехватки воздуха, как следствие — судорожные вдохи, кашель и сопение. Также гипервентиляцию сопровождают боли в сердце и мышечная скованность.
Важно. Однако гипервентиляция может быть следствием заболеваний щитовидной железы, врожденных дисплазий соединительной ткани и даже проблем с сердцем. В любом случае нужна четкая дифференциальная диагностика.
Взаимосвязь стресса и гипервентиляционного синдрома
Заболевания, при которых показатели газового состава крови являются диагностически решающими:
- обструктивные болезни легких (хронический бронхит, астма, профессиональные заболевания легких — асбестоз, силикоз, силикатоз и др.);
- длительное вынужденное нахождение на искусственной вентиляции легких;
- септические состояния (инфекционные осложнения);
- артерио-венозные аневризмы и мальформации (врожденные и травматические), в которых идет перемешивание венозной и артериальной крови.
Важно. Изменение газового состава крови в местах травматических аневризм очень помогает сосудистым хирургам определить степень открытости артериовенозного соустья и, соответственно, степень смешения артериальной крови с венозной. Например, количество О2 в вене вблизи патологического соустья может достигать 18 и даже 20 об.%, процент насыщения доходить до 80-ти, а то и до 93.
Для оценки травматического повреждения и эффективности проведенного оперативного вмешательства берут кровь из здорового (контрольного) участка вены и из отрезка вены, близкого к патологическому артериовенозному шунту.
Артериовенозное патологическое соустье со смешением крови
Обычно при ургентных (экстренных или запущенных) состояниях становится нужен такой анализ. Газовый состав крови помогает врачу понять прогноз пациента и дать правильную оценку эффективности проводимой терапии.
Рекомендуем изучить похожие материалы:
- 1. Система гемостаза: зачем сдавать анализ на свёртываемость крови
- 2. Как подобрать диету по группе крови: худеем вместе
- 3. Причины повышения или понижения нейтрофилов в анализе крови у детей?
- 4. Нормы содержания нейтрофилов в крови и какие функции они выполняют
- 5. Что значат повышенные эозинофилы в анализе крови у взрослых?
- 6. Правильное питание при повышенном уровне билирубина в крови
- 7. Низкий уровень общего билирубина в крови: причины понижения показателя
Источник
Нарушения кислотно-щелочного состояния (КЩС) являются в большинстве случаев следствием серьезного патологического нарушения и редко имеют самостоятельное значение. Исследование газового состава артериальной крови (ГАК) — незаменимый метод диагностики у пациентов с подозрением на респираторную патологию или метаболические нарушения. Повторный анализ газового состава артериальной крови (ГАК) позволяет отслеживать течение основного заболевания и контролировать эффект проводимой терапии. Результаты исследования газового состава артериальной крови (ГАК) должны рассматриваться параллельно с оценкой клинического состояния пациента. Метод имеет ограничения, поскольку позволяет исследовать только жидкость внеклеточного компартмента и не дает информации о pH и газовом составе внутриклеточной жидкости.
Многие клиницисты сталкиваются с трудностями при интерпретации газового состава крови. В этом обзоре даются базовые сведения о газовом и кислотно-основном гомеостазе и принципы пошагового подхода к интерпретации их нарушений. Раздел, посвященный физическим аспектам, направлен на углубленное изучение рассматриваемого вопроса; при желании его можно пропустить и перейти непосредственно к клиническому приложению.
Основы физики
Показатель pH представляет собой отрицательный десятичный логарифм концентрации ионов водорода (H+). При показателе pH = 7,0 концентрация H+ составляет 10-7 или 1/107. При этом значении pH среда является нейтральной, поскольку концентрации OH- и H+ равны.
H2O → H+ + OH-
При pH = 1, концентрация H+ составляет 10-1 или 1/10, среда при этом является очень концентрированной кислотой.
pH 7,0 = нейтральная среда
pH > 7 = щелочная среда
pH < 7 = кислая среда
pH 7,4 = физиологическое значение pH внеклеточной жидкости (нормальные значения колеблются от 7,35 до 7,45)
В связи с особенностями логарифмического исчисления незначительные изменения pH соответствуют выраженным изменениям концентрации H+. При падении показателя с 7,4 до 7,0, кислотность среды (концентрация ионов водорода) повышается в 2,5 раза.
pH | Концентрация H+ |
7,4 | 1/25.118.864 |
7,3 | 1/19.952.623 |
7,2 | 1/15.848.931 |
7,1 | 1/12.589.254 |
7,0 | 1/10.000.000 |
♦ Обычно pH измеряют прямым методом при помощи специального стеклянного электрода, который имеет мембрану, проницаемую для H+.
♦ Концентрация ионов бикарбоната — HCO3- измеряется бикарбонатным электродом или может быть получена расчетным путем.
♦ CO2 обычно измеряется прямым методом при помощи СО2-электрода.
Существуют разнообразные физиологические буферные системы, которые помогают предотвратить внезапные скачки внутриклеточного значения pH (такие, как бикарбонатная, лактатная, фосфатная, аммонийная, гемоглобиновая, белковая и прочие). Бикарбонатная система участвует в регуляции pH всех компартментов внутренней среды, обладая возможностью вмешиваться в кислотно-щелочное состояние на двух уровнях: концентрация HCO3- регулируется почками, a CO2 — легкими.
H+ + HCO3- → H2CO3 → H2O + CO2
Точное значение pH среды может быть рассчитано при помощи уравнения Гендерсона-Хассельбаха:
pH = pK + log
[основание] / [кислота] = pK + log [HCO3-] / [H2CO3]
pK представляет собой специфичную для данного буфера константу (например, для бикарбонатной системы при 37°С pK составляет 6,1).
Поскольку концентрация HCO3- регулируется почками, а выведение CO2 — легкими, уравнение принимает следующий вид:
pH = константа ПОЧКИ / ЛЕГКИЕ
Терминологические замечания: ацидоз / ацидемия и алкалоз / алкалемия
p | Отрицательный log («p» малое) |
P | Парциальное давление («P» большое) |
PA | Альвеолярное парциальное давление («А» большое) |
Pa | Артериальное парциальное давление («а» малое) |
Pv | Венозное парциальное давление |
Суффикс «емия» («aemia») означает «определяемый в крови».
При описании суммарного кислотно-щелочного состояния крови корректным является использование терминов ацидемия или алкалемия. Определяющую роль в этом случае играет исключительно значение pH. При этом не учитываются прочие моменты: носит ли первичное нарушение метаболический либо респираторный характер и каковы механизмы его компенсации.
При описании влияния метаболических или респираторных нарушений на состояние крови и прочих физиологических жидкостей используется суффикс «оз» («osis»). Например, при метаболическом ацидозе с неполной респираторной компенсацией отмечается снижение pH — данное состояние будет носить название ацидемия.
Клиническое значение
Показатель | Границы нормы | Единицы | Примечания |
pH | 7,35 — 7,4 — 7,45 | (относительная величина) | |
PaCO2 | 4,8 — 5,3 — 5,9 36 — 40 — 44 | кПа мм рт. ст. | |
PaO2 | 11,9 — 13,2 90 — 100 | кПа мм рт. ст. | На уровне моря FiO2 = 21%, становится ниже с повышением высоты, повышается при кислородотерапии |
HCO3- (актуальный бикарбонат — AB) | 22 — 24 — 26 | ммоль/л | Нормальные значения могут варьировать при изменении PCO2 |
Стандартный бикарбонат (SB) | 22 — 24 — 26 | ммоль/л | [HCO3-] после его стандартизации (эквилибровка) по значению CO2 40 мм рт. ст. (5,3 кПа) |
Избыток оснований (BE) | -2,0 — +2,0 | ммоль/л | При отрицательном значении BE говорят о дефиците оснований |
Бикарбонатная буферная система играет наиболее важную роль в поддержание постоянства кислотно-щелочного состояния и может быть оценена при анализе газового состава крови. Легкие способны регулировать выведение CO2, а почки экскрецию или задержку HCO3-. Это взаимодействие позволяет с высокой точностью поддерживать и регулировать соотношение кислот и оснований в организме.
pH | Общие кислотно-щелочные свойства среды. Указывает, имеется ли у пациента ацидемия или алкалемия. |
PCO2 | Респираторный компонент |
PO2 | Характеризует оксигенацию и не имеет отношения к кислотно-щелочному состоянию (КЩС). В общих чертах является маркером тяжести заболеваний легких, но не поддается интерпретации при неизвестном значении FiO2. PO2 может быть выше 650 мм рт. ст. (85 кПа) при нормальной функции легких на фоне FiO2 = 100%. Прогнозируемый уровень PaO2 при нормальной функции легких может быть рассчитан при помощи уравнения альвеолярного газа. В грубом приближении значение прогнозируемого PaO2 может быть рассчитано как FiO2 (%) х 6 мм рт. ст. (например, при вентиляции пациента с FiO2 = 40% PaO2 должно составить 6 х 40 = 240 мм рт. ст.). Если реальное значение ниже расчетного, имеет место внутрилегочное шунтирование крови (кровь не проходит через вентилируемые альвеолы и поступает в аорту неоксигенированной.). Чем тяжелее поражение легких, тем ниже будет значение PaO2 при данном уровне FiO2. |
HCO3- (актуальный бикарбонат) | Ренальный компонент компенсации. |
Стандартный бикарбонат | Дополнительный показатель, характеризующий ренальный (метаболический) компонент в нарушениях кислотно-щелочного состояния (КЩС). Имеет большую ценность, чем актуальный бикарбонат, поскольку корректирован по отношению к измененному значению PCO2. |
Избыток оснований | Соответствует количеству сильной кислоты (или основания в случае дефицита оснований), необходимому для титрования 1 литра крови и возвращении значения pH к значению 7,4 при PCO2 = 5,3 кПа и температуре 37°С. Дополнительный показатель, характеризующий ренальный (метаболический) компонент нарушения. Информационная ценность близка к таковой стандартного бикарбоната (нормальное значение около 0 ммоль/л, для стандартного бикарбоната — 24 ммоль/л). |
Дыхательная система способна осуществлять быструю компенсацию нарушений кислотно-щелочного состояния (КЩС) (в течение нескольких минут). Метаболическая компенсация (почки, система бикарбоната) запускается в течение часов или нескольких дней. Взаимодействие этих компенсаторных систем позволяет точно регулировать кислотно-щелочного состояние (КЩС). Их цель состоит в поддержании внеклеточного значения pH на уровне 7,4, который является оптимальным для протекания большинства метаболических процессов, например, химических реакций, катализируемых ферментами, и переноса веществ через клеточные мембраны.
Патологические процессы, такие, как тканевая гипоксия, почечная недостаточность, гиповентиляция ведут к нарушению кислотно-щелочного баланса. При нарушении со стороны одной из регуляторных систем другая будет пытаться компенсировать изменения кислотно-щелочного состояния (КЩС) и привести pH к оптимальному значению. Нарушения кислотно-щелочного состояния (КЩС) и некоторые их причины представлены в таблице «Нарушения кислотно-щелочного состояния«.
Респираторный ацидоз | PaCO2 повышено | Развивается при неадекватной вентиляции, когда продукция CO2 превышает его элиминацию. Возможные причины: обструкция дыхательных путей, депрессия дыхания (вследствие действия препаратов, ЧМТ, заболеваний дыхательной системы и т.д.) |
Респираторный алкалоз | PaCO2 снижено | Возникает при гипервентиляции. Гипервентиляция может быть следствием ответа на гипоксемию и включения гипоксического респираторного драйва. Способность легких к выведению CO2 значительно выше, чем к абсорбции O2, в связи с чем при заболеваниях легких часто наблюдается гипоксемия на фоне нормального или пониженного уровня CO2. Причиной респираторного алкалоза может быть ИВЛ с высоким минутным объемом вентиляции. |
Метаболический ацидоз | HCO3- снижен (дефицит оснований) | Множество этиологических факторов: ♦ Потери бикарбоната через ЖКТ или хроническое поражение почек (нормальный анионный интервал) ♦ Поступление дополнительных количеств неорганических кислот, например, при диабетическом кетоацидозе, лактат-ацидозе, связанном с тканевой гипоксией, передозировка салицилатов, отравление этиленгликолем и прочими ядами, снижение экскреции кислот при почечной недостаточности (повышение анионного интервала). |
Метаболический алкалоз | HCO3- повышен (избыток оснований) | Возникает при потерях желудочного содержимого (например, пилоро-стеноз) и терапии диуретиками. Метаболический алкалоз часто сопровождается снижением хлоридов (Cl-) сыворотки. |
Смешанный ацидоз | PaCO2 повышено, HCO3- снижено | Крайне опасное нарушение. Может развиваться при таких тяжелых расстройствах, как септический шок, полиорганная недостаточность, остановка кровообращения. |
Компенсаторные механизмы пытаются вернуть pH к нормальному значению, несмотря на сохранение отклонений [HCO3-] и PCO2 до коррекции первичного нарушения. Компенсация нарушений кислотно-щелочного состояния (КЩС) не должна носить характер избыточной. Например, при метаболическом ацидозе наблюдается падение значения pH < 7,4. При адекватной респираторной компенсации pH будет стремиться к нормальному значению, но не превысит 7,4.
Вот несколько подсказок, которые помогут Вам дифференцировать первичное нарушение и компенсаторный эффект.
Первичное нарушение (метаболического или респираторного характера) по типу параллельно отклонению pH: при снижении pH имеет место ацидотическое нарушение, при повышении pH развивается алкалоз. Компенсаторный эффект (респираторный или метаболический) имеет противоположное направление. Механизмы компенсации будут отклонять pH в сторону нормального значения, при этом полная компенсация достигается редко (восстановление нормального исходного значения), а избыточная компенсация — никогда.
К примеру, если Вы обнаружили сочетание метаболического ацидоза и респираторного алкалоза, значение pH подскажет, какое из нарушений носит первичный, а какое — компенсаторный характер. Если значение pH снижено, первичным дефектом является метаболический ацидоз с респираторной компенсацией. При повышении pH в роли первичного нарушения выступает респираторный алкалоз с метаболической компенсацией.
Шаг 1 | Общая картина без отклонений, имеется ацидемия или алкалемия? | pH < 7,35 = ацидемия [… перейдите к шагу 2] pH > 7,45 = алкалемия [… перейдите к шагу 5] |
Шаг 2 | Если наблюдается ацидемия: Характер первичного нарушения: метаболический, респираторный или смешанный? | CO2 повышен = респираторный ацидоз [… шаг 3] Бикарбонат снижен, значение BE отклонено в отрицательном направлении = метаболический ацидоз [… шаг 4] |
Шаг 3 | Если имеет место респираторный ацидоз: Имеется метаболическая компенсация? | CO2 повышено (респираторный ацидоз), но метаболический компонент изменяется в противоположном направлении (BE или стандартный бикарбонат (SB) повышены, как при метаболическом алкалозе), что говорит о метаболической компенсации первичных нарушений кислотно-щелочного состояния (КЩС). |
Шаг 4 | Если имеет место метаболический ацидоз: Имеется ли респираторная компенсация? | Значение BE принимает отрицательное значение (метаболический ацидоз); респираторный компонент изменяется в противоположном направлении (CO2 снижен — респираторный алкалоз), что говорит о респираторной компенсации. |
Шаг 5 | Если наблюдается алкалемия: Характер первичного нарушения: метаболический или респираторный? | Первичное нарушение имеет то же направление, что и изменения pH (в сторону алкалоза). Респираторный алкалоз сопровождается снижением CO2. При метаболическом алкалозе CO2 повышается и значение BE становится положительным. |
Шаг 6 | При наличии респираторного или метаболического алкалоза: Есть ли элементы компенсации? | Изменения равнозначны вышеуказанным. |
Шаг 7 | Обратите внимание на оксигенацию | Соответствует ли значение PaO2 установленному FiO2? Уровень оксиге-нации ниже прогнозированного может указывать на заболевание легких, шунтирование крови или ошибочный забор образца венозной крови (в последнем случае PaO2 обычно < 40 мм рт. ст., сатурация < 75%). Способность легких к элиминации CO2 превышает их резерв в отношении оксигенации. В связи с этим заболевания легких часто сопровождаются гипоксемией на фоне нормального или сниженного значения PCO2. Значительное повышение CO2 сопровождается параллельным снижением O2. |
Шаг 8 | Суммируйте Ваши наблюдения | Например: наблюдается метаболический ацидоз (поскольку pH снижен, BE имеет отрицательное значение) с респираторной компенсацией (поскольку параллельно снижено значение PCO2). |
Шаг 9 | Попытайтесь установить причину нарушений |
Автор(ы): Др. Д. Г. Барретт (Эмпангени, Южная Африка)
Источник