Анализ центральных и периферических компонентов крови
Обмен газов в легких
В состав атмосферного воздуха входит 20,93% кислорода, 0,03% углекислого газа, 79,03% азота. В альвеолярном воздухе содержится 14% кислорода, 5,5% углекислого газа и около 80% азота. При выдохе альвеолярный воздух смешивается с воздухом мертвого пространства, состав которого соответствует атмосферному. Поэтому в выдыхаемом воздухе 16% кислорода, 4,5% углекислого газа и 79,4% азота. Дыхательные газы обмениваются в легких через альвеоло — капиллярную мембрану. Это область контакта альвеолярного эпителия и эндотелия капилляров. Переход газов через мембрану происходит по законам диффузии. Скорость диффузии прямо пропорциональна разнице парциального давления газов. Согласно закону Дальтона, парциальное давление каждого газа в их смеси, прямо пропорционально его содержанию в ней. Поэтому парциальное давление кислорода в альвеолярном воздухе 100 мм.рт.ст., а углекислого газа 40 мм.рт.ст. Напряжение (термин применяемый для газов растворенных в жидкостях) кислорода в венозной крови капилляров легких 40 мм.рт.ст., а углекислого газа — 46 мм.рт.ст. Поэтому градиент давления по кислороду направлен из альвеол в капилляры, а для углекислого газа в обратную сторону. Кроме того скорость диффузии зависит от площади газообмена, толщины мембраны и коэффициента растворимости газа в тканях. Общая поверхность альвеол составляет 50-80 м2, а толщина альвеоло -капиллярной
мембраны всего 1 мкм. Это обеспечивает высокую эффективность газообмена. Показателем проницаемости мембраны является коэффициент диффузии Крога. Для углекислого газа он в 25 раз больше, чем для кислорода. Т.е. он диффундирует в 25 раз быстрее. Высокая скорость диффузии компенсирует более низкий градиент давления углекислого газа. Диффузионная способность легких для газа (л) характеризуется его количеством, которое обменивается за 1 минуту на 1 мм.рт.ст. градиента давления. Для кислорода в норме она равна 30 мл*мин-1*мм.рт.ст.-1 У здорового человека напряжение дыхательных газов в альвеолярной крови, становится практически таким же, как их парциальное давление в альвеолярном воздухе. При нарушениях газообмена в альвеолах в крови повышается напряжение углекислого газа и снижается кислорода (пневмония, туберкулез, пневмосклероз).
Транспорт газов кровью
Напряжение кислорода в артериальной крови 95 мм.рт.ст. В растворенном состоянии кровью переносится всего 0,3 об.% кислорода. Основная его часть транспортируется в виде HBO2. Максимальное количество кислорода, которое может связать гемоглобин при его полном насыщении, называется кислородной емкостью крови. В норме она составляет 18 — 24 об.% Образование оксигемоглобина в легких и его распад в капиллярах тканей в основном обусловлены изменениями напряжения кислорода. В капиллярах легких, где напряжение его велико, происходит его образование. В тканях напряжение кислорода падает. Поэтому там оксигемоглобин диссоциирует на восстановленный гемоглобин и кислород. В норме связывание гемоглобина с кислородом определяется его парциальным давлением в альвеолярном воздухе, а следовательно напряжением в крови легочных капилляров. Зависимость концентрации оксигемоглобина от напряжения кислорода в крови называется кривой диссоциации оксигемоглобина. Она не является прямо пропорциональной. При низком напряжении кислорода рост концентрации оксигемоглобина замедлен. При напряжении от 10 до 40 мм.рт.ст. он практически прямо пропорционален. А выше снова замедляется. Поэтому кривая имеет S-образную форму. Кроме напряжения кислорода, на образование и распад оксигемоглобина влияют и другие факторы. При сдвиге реакции крови в кислую сторону, его диссоциация ускоряется. Ее ускоряет повышение напряжения углекислого газа и температуры. Эти изменения крови имеют место в капиллярах тканей. Поэтому там они способствуют ускоренной диссоциации оксигемоглобина и освобождению кислорода.
Напряжение углекислого газа в венозной крови 46 мм. рт. ст. Его перенос от тканей к легким также происходит несколькими путями. Всего в крови
находится около 50 об% углекислого газа. В плазме растворяется 2,5 об.%. В виде карбгемоглобина, в соединении с глобином, переносится около 5 об%. Остальное количество транспортируется в виде гидрокарбонатов, находящихся в плазме и эритроцитах. В капиллярах тканей углекислый газ поступает в эритроциты. Там под влиянием фермента карбоангидразы он соединяется с катионами водорода и превращается в угольную кислоту. Она диссоциирует и большая часть гидрокарбонат анионов выходит в плазму. Там они образуют с катионами натрия гидрокарбонат натрия. Меньшая их часть соединяется в эритроцитах с катионами калия, образуя гидрокарбонат калия. В капиллярах легких напряжение углекислого газа падает, а напряжение кислорода возрастает. Образующийся в эритроцитах оксигемоглобин является более сильной кислотой, чем угольная. Поэтому он вытесняет из гидрокарбоната калия анионы угольной кислоты и образует с калием калиевую соль оксигемоглобина. Освобождающиеся анионы угольной кислоты соединяются с катионами водорода. Синтезируется свободная угольная кислота. При низком напряжении углекислого газа карбоангидраза действует противоположным образом, т.е. расщепляет ее на углекислый газ и воду, которые выдыхаются. Одновременно из плазмы в эритроциты поступают анионы угольной кислоты, образующиеся в ходе диссоциации гидрокарбоната натрия. Они также образуют с катионами водорода угольную кислоту, которая расщепляется карбоангидразой на углекислый газ и воду. При дыхании из организма выводится около 200 мл углекислого газа в минуту. Это важный механизм поддержания кислотно-щелочного равновесия крови.
Обмен дыхательных газов в тканях
Обмен газов в капиллярах тканей происходит путем диффузии. Этот процесс осуществляется за счет разности их напряжения в крови, тканевой жидкости и цитоплазме клеток. Как и в легких для газообмена большое значение имеет величина обменной площади, т.е. количество функционирующих капилляров. В артериальной крови напряжение кислорода 96 мм.рт.ст., в тканевой жидкости около 20 мм.рт.ст., а работающих мышечных клетках близко к 0. Поэтому кислород диффундирует из капилляров в межклеточное пространство, а затем клетки. Для нормального протекания окислительно-восстановительных процессов в митохондриях необходимо, чтобы напряжение кислорода в клетках было не менее 1 мм.рт.ст. Эта величина называется критическим напряжением кислорода в митохондриях. Ниже ее развивается кислородное голодание тканей. В скелетных мышцах кислород накапливает белок миоглобин, по строению близкий к гемоглобину. Напряжение углекислого газа в артериальной крови 40 мм.рт.ст., в межклеточной жидкости 46 мм.рт.ст., в цитоплазме 60 мм.рт.ст. Поэтому он выходит в кровь. Количество кислорода, которое используется тканями называется коэффициентом его утилизации. В состоянии покоя ткани используют около 40% кислорода или 8-10 об%/
Дата добавления: 2015-02-24; просмотров: 5610; Опубликованный материал нарушает авторские права? | Защита персональных данных
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Увлечёшься девушкой-вырастут хвосты, займёшься учебой-вырастут рога 10244 — | 7936 — или читать все…
Читайте также:
Источник
Деятельность дыхательного центра, определяющая частоту и глубину дыхания, зависит прежде всего от напряжения газов, растворенных в крови, и концентрации в ней водородных ионов. Ведущее значение в определении величины вентиляции легких имеет напряжение двуокиси углерода в артериальной крови: оно как бы создает запрос на нужную величину вентиляции альвеол.
Образование в тканях двуокиси углерода пропорционально интенсивности окислительных процессов. Количество этого газа в крови в значительной степени обусловливает ее кислотно-щелочное состояние. Отсюда следует целесообразность поддержания на постоянном уровне напряжения двуокиси углерода в артериальной крови.
Организм здорового человека в обычных условиях снабжается кислородом в достаточном (а не минимальном) количестве. Исключение составляют лишь условия напряженной физической работы. Так, парциальное давление кислорода в альвеолярном воздухе может быть снижено до 80 мм рт. ст. без заметных нарушений в организме. С другой стороны, увеличение содержания кислорода во вдыхаемом воздухе до 40% (парциальное давление 304 мм рт. ст.) также является безвредным.
Таким образом, организм наземных животных и человека в процессе эволюции приспособился к дыханию атмосферным воздухом при обычном (на уровне моря) или несколько сниженном (на небольших высотах) атмосферном давлении. При этом напряжение двуокиси углерода поддерживается на относительно постоянном уровне, при котором организм обеспечивается вполне достаточным количеством кислорода.
Для обозначения повышенного, нормального и’сниженного напряжения двуокиси углерода в крови используют термины «гиперкапния», «нормокапния» и «гипокапния* соответственно. Нормальное содержание кислорода называется нормоксией, а недостаток кислорода в организме и тканях — гипоксией, в крови — гипоксемией. Увеличение напряжения кислорода есть гипероксия. Состояние, при котором гиперкапния и гипоксия существуют одновременно, называется асфиксией.
Нормальное дыхание в состоянии покоя называется эйпноэ. Гиперкапния, а также снижение величины рН крови (ацидоз) сопровождаются увеличением вентиляции легких — гиперпноэ, направленным на выведение из организма избытка двуокиси углерода. Вентиляция легких возрастает преимущественно за счет глубины дыхания (увеличения дыхательного объема), но при этом возрастает и частота дыхания.
Гипокапния и повышение уровня рН крови ведут к уменьшению вентиляции, а затем и к остановке дыхания — апноэ.
Развитие гипоксии вначале вызывает умеренное гиперпноэ (в основном в результате возрастания частоты дыхания), которое при увеличении степени гипоксии сменяется ослаблением дыхания и его остановкой. Апноэ вследствие гипоксии смертельно опасно. Его причиной является ослабление окислительных процессов в мозге, в том числе в нейронах дыхательного центра. Гипоксическому апноэ предшествует потеря сознания.
Гиперкапнию можно вызвать вдыханием тазовых смесей с повышенным до 6% содержанием двуокиси углерода. Деятельность дыхательного центра человека находится под произвольным контролем. Произвольная задержка дыхания на 30—60 с вызывает асфик-тические изменения газового состава крови, после прекращения задержки наблюдается гиперпноэ. Гипокапнию легко вызвать произвольным усилением дыхания, а также избыточной искусственной вентиляцией легких (гипервентиляция). У бодрствующего человека даже после значительной гипервентиляции остановки дыхания обычно не возникает вследствие контроля дыхания передними отделами мозга. Гипокапния компенсируется постепенно, в течение нескольких минут.
Гипоксия наблюдается при подъеме на высоту вследствие снижения атмосферного давления, при крайне тяжелой физической работе, а также при нарушениях дыхания, кровообращения и состава крови.
Во время сильной асфиксии дыхание становится максимально глубоким, в нем принимают участие вспомогательные дыхательные мышцы, возникает неприятное ощущение удушья. Такое дыхание называется диспноэ.
В целом поддержание нормального газового состава крови основано на принципе отрицательной обратной связи. Так, гиперкапния вызывает усиление активности дыхательного центра и увеличение вентиляции легких, а гипокапния — ослабление деятельности дыхательного центра и уменьшение вентиляции.
Дата добавления: 2015-10-13; просмотров: 6103; Опубликованный материал нарушает авторские права? | Защита персональных данных
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете??? 8752 — | 7558 — или читать все…
Читайте также:
Источник
Постоянно меняющиеся режимы деятельности организма, сопровождающиеся изменением обмена веществ, использования кислорода, изменение состава атмосферного воздуха в помещении могут стать причиной изменений соотношения содержания кислорода и углекислоты в альвеолярном воздухе и в крови. Однако, несмотря на всевозможные подобные факторы, организм способен поддерживать оптимальный уровень кислорода и углекислоты. Организм имеет широкие возможности изменять объем легочной вентиляции, частоту и амплитуду вдоха и выдоха.
В случае отклонения от оптимального уровня показателей содержания О2 и CO2 в альвеолярном воздухе и в крови возбуждаются хеморецепторы каротидного синуса, дуги аорты, продолговатого мозга. Благодаря афферентному синтезу информации с рецепторов в нервном центре системы формируется новая программа действия для удовлетворения существующей дыхательной потребности, которая передается к дыхательным мышцам и обеспечивает объем легочной вентиляции, ритм дыхания, необходимый для достижения конечного полезного результата — поддержания оптимальных величин содержания 02 и СО2 в альвеолярном воздухе и в крови.
Дыхательные нейроны нервного центра, образующие так называемые центры вдоха и выдоха, центр пневмотаксиса, обладают согласованной автоматической фазной деятельностью. Между центром вдоха и выдоха проявляются реципрокные отношения. В центре вдоха ритмически залпами возникает возбуждение (импульсное), активность или программа действия. Возбуждение или программа действия по эфферентным проводникам поступает к мышцам вдоха и вызывает вдох такой продолжительности и глубины, который соответствует программе, сложившимся условиям и характеризуется определенными параметрами — объемом поступившего в легкие воздуха, силой сокращения вдыхательных мышц.
Возникающая импульсная активность нейронов центра вдоха одновременно непосредственно и через центр пневмотаксиса возбуждает нейроны центра выдоха. Нейроны центра выдоха, возбуждаясь по законам реципрокных отношений, оказывают тормозное влияние на активность нейронов центра вдоха, возбуждение центра вдоха подавляется, вдох прекращается. Возбуждение нейронов центра вдоха при выдохе подавляется и импульсацией с механорецепторов легких. Растяжение легких при вдохе вызывает возбуждение механорецепторов легких, импульсы с рецепторов по афферентным волокнам блуждающих нервов поступают в нервный центр и подавляют возбуждение нейронов центра вдоха, возбуждают нейроны центра выдоха, программа действия из нервного центра выдоха по эфферентным проводникам поступает к мышцам выдыхателям, вызывает их сокращение, происходит выдох.
Возбуждение рецепторов растяжения легких нарастает в ходе вдоха. Прекращение вдоха наступает тем скорее, чем глубже вдох и чем быстрее он развивается. Так регулируется соотношение между глубиной и частотой дыхания.
Количество залпов возбуждений нейронов центра вдоха в единицу времени, ритм дыхательных движений, и сила этих залпов возбуждений, глубина вдоха и выдоха зависят от возбудимости нейронов, специфики обмена веществ, особой чувствительности нейронов к окружающей их гуморальной среде, к импульсации с хеморецепторов сосудов, мышц, пищеварительного аппарата и др. Чем выше возбудимость нейронов, тем больше залпов импульсов рождается в центре вдоха в единицу времени и наоборот. Поступающая с рецепторов результата информация изменяет возбудимость центра.
Избыток в крови углекислоты и недостаток кислорода, и связанный с ними поток импульсов в дыхательный центр, поток импульсов с мышц при мышечной деятельности или с других органов при усилении их деятельности, сопровождающейся увелчением потребления О2 и образования С02, вызывают повышение возбудимости дыхательного центра, увеличение частоты генерации импульсов в инспираторных нейронах, учащение дыхательных движений, восстановление оптимального содержания О2 и СО2 в альвеолярном воздухе и в крови. Наоборот, избыток кислорода и недостаток углекислого газа и связанное с ними уменьшение поступления импульсов с хеморецепторов вызывают понижение возбудимости дыхательного центра, уменьшение частоты генерации импульсов в инспираторных нейронах, урежение дыхательных движений, уменьшение вентиляции легких, восстановление оптимального количества О2 и СО2.
Значительную роль в поддержание тонуса дыхательного центра играют импульсы, поступающие с рецепторов верхних дыхательных путей.
С рецепторов верхних дыхательных путей осуществляются и защитные дыхательные рефлексы, возникающие при скоплении в воздухоносных путях слизи, попадании туда инородных тел и химических раздражителей: кашель, чихание.
Механизм кашля состоит в сильном вслед за глубоким вдохом, сокращении мышц-вдыхателей (главным образом брюшных) при закрытой голосовой щели, что создает высокое давление в трахее и бронхах, после чего голосовая щель открывается и происходит резкий выдох.
Механизм чихания состоит в резком выдохе через носовые ходы вслед за глубоким вдохом при постоянно открытой голосовой щели. Скорость движения выдыхаемого воздуха при этом достигает 160 км/час. Рефлекторное закрытие голосовой щели происходит при глотании, при действии на рецепторы сильных раздражителей.
Физиология выделения.
Выделение как один из компонентов систем, обеспечивающих постоянство внутренней среды организма. Органы выделения, их участие в поддержании важнейших параметров внутренней среды. Функции почек.
Выделение — это гомеостатический процесс освобождения организма от конечных и промежуточных продуктов метаболизма, чужеродных и токсических веществ, избытка солей, воды, органических соединений.
Функция выделения осуществляется:
-почками
-ЖКТ
-лёгкими
-потовыми и сальными железами кожи
-слюнными железами
а) Выделительная функция печени и пищеварительного тракта
Печень осуществляет экскрецию желчи (от 500 до 2000 мл в сутки):
-конечные продукты метаболизма гемоглобина, порфирина (в виде желчных пигментов)
-конечные продукты холестерина (в виде желчных кислот)
-продукты деградации гормонов пептидного ряда
-мочевина
-Са 3+, Р 2+
-лекарства и яды.
б) Выделительная функция желудка
В составе желудочного сока находятся:
-мочевина и мочевая кислота
-лекарства (йод, салицилаты, хинин)
-токсические вещества (тяжелые Ме и прочие).
в) Выделительная функция кишечника
Осуществляет экскрецию следующих компонентов:
-продуктов распада пищевых веществ, не всосавшихся в кишечнике
-токсических веществ (в т.ч. тяжелые Ме, кальций)
-веществ, поступивших с пищеварительными соками и желчью
-секреция стенкой кишечника из плазмы некоторых веществ (напр. Белков)
г) Выделительная функция лёгких
-выделение летучих метаболитов и экзогенных веществ (углекислого газа, аммиака, ацетона, этанола, метилмеркаптана и др.)
-выделение продуктов обмена самой легочной ткани (например, продукты деградации сурфактанта)
-белок (гамма-глобулин), входящий в состав секрета бронхиальных желез
-при повышении проницаемости аэрогематического барьера — пурины, аденозин и т.д.
-при гиперсекреции желез слизистой — мочевина
-вода (400-1000 мл)
д) Выделительная функция кожи
Потовые железы за сутки выделяют от 300 до 1000 мл пота, могут выделять до 10 л.
Сальные железы.
Потоотделение зависит от:
-температуры среды
-интенсивности метаболизма.
Пот — это секрет, содержащий воду, мочевину, мочевую кислоту, креатин, хлориды, натрий, калий, кальций, органические вещества, липиды, микроэлементы, некоторые ферменты (пепсиноген, амилаза, щелочная фосфатаза).
Регуляция потоотделения:
-нейрогенная — симпатические/холинергические влияния,
-гормональная — вазопрессин, альдостерон, гормоны щитовидной железы, половые стероиды.
Сальные железы секретируют:
-воду (2/3)
-ряд соединений: холестерин, сквален, аналоги казеина, продукты обмена половых гормонов, кортикостероидов, витаминов, ферментов. В сутки выделяется до 20г секрета.
Регуляция сальных желез:
-половые гормоны
-кортикостероиды
Функции почек.
Эндокринная, регуляторная, выделительная.
Регуляторная функция почек
-Регуляция состава и объёма жидкостей организма путём выведения или сохранения воды и растворов
-Регуляция электролитного равновесия (закон изоосмии)
-Регуляция кислотно-основного состояния (постоянство pH).
Эндокринная функция почек
-Синтез и секреция в кровь БАВ: ренина, эритропоэтина, 1,25 дигидроксивитамина D3, простагландинов
-Синтез ряда веществ: при глюконеогенезе (особенно при голодании), при аммониогенезе (синтез аммиака при дезаминировании АК — выведение избытка H+).
Выделительная функция почек
-экскреция конечных продуктов азотистого обмена (мочевина из белка, аммиак из аминокислот, мочевая кислота из нуклеиновых кислот, креатинин из креатинфосфата мышц)
-экскреция некоторых веществ пищи или субстанций, образовавшихся в процессе метаболизма
-экскреция токсинов эндо- и экзогенного происхождения
-экскреция лекарственных веществ.
Дата добавления: 2015-11-05; просмотров: 2837 | Нарушение авторских прав | Изречения для студентов
Читайте также:
Рекомендуемый контект:
Поиск на сайте:
© 2015-2020 lektsii.org — Контакты — Последнее добавление
Источник